

Role of Microbial Communities in Stabilizing Soil Organic Carbon Under Changing Climate Conditions

Dr. Louise Fresco

Wageningen University & Research, Netherlands

* Corresponding Author: Dr. Louise Fresco

Article Info

P - ISSN: 3051-3448 **E - ISSN:** 3051-3456

Volume: 04 Issue: 01

January - June 2023 Received: 08-12-2022 Accepted: 11-01-2023 Published: 08-03-2023

Page No: 07-11

Abstract

Soil organic carbon (SOC) represents the largest terrestrial carbon pool, containing approximately 1,550 Pg of carbon globally, which is three times more than atmospheric CO₂. Under changing climate conditions, the stability of SOC depends critically on microbial community dynamics and their metabolic responses to environmental perturbations. This study examines the mechanisms by which microbial communities influence SOC stabilization through biochemical processes, physical protection, and ecosystem feedback loops. We analyzed microbial diversity patterns, enzymatic activities, and carbon cycling processes across different soil types and climate scenarios. Results indicate that microbial community composition significantly affects SOC persistence, with fungal-to-bacterial ratios serving as key indicators of carbon stability. Temperature increases of 2-4 °C enhanced microbial respiration rates by 15-25%, while altered precipitation patterns shifted community structure toward more drought-tolerant taxa. Microbial necromass contributed 50-80% of stable SOC pools through formation of organo-mineral associations. These findings highlight the critical role of microbial communities as both drivers and responders in soil carbon dynamics under climate change, emphasizing the need for management strategies that enhance microbial diversity and function to maintain SOC stability.

Keywords: Soil Organic Carbon, Microbial Communities, Climate Change, Carbon Sequestration, Soil Microbiome, Ecosystem Stability

Introduction

Soil organic carbon (SOC) plays a pivotal role in global carbon cycling, representing the largest terrestrial carbon reservoir and significantly influencing atmospheric CO₂ concentrations ^[1]. The stability and dynamics of SOC are intrinsically linked to microbial community structure and function, as microorganisms serve as both decomposers of organic matter and contributors to soil carbon pools through necromass formation ^[2, 3]. Under current climate change scenarios, rising temperatures, altered precipitation patterns, and increased atmospheric CO₂ concentrations are fundamentally altering soil microbial communities, with cascading effects on SOC stability ^[4, 5].

Microbial communities regulate SOC through multiple mechanisms including enzymatic decomposition, physical aggregate formation, and biochemical transformations that determine carbon residence times ^[6]. The composition of microbial communities, particularly the balance between fungi and bacteria, influences the formation of different organic carbon pools with varying degrees of stability ^[7,8]. Fungal-dominated communities typically promote longer-term carbon storage through the production of recalcitrant compounds and enhanced aggregate stability, while bacterial-dominated systems often exhibit higher turnover rates ^[9].

Climate change impacts on microbial communities occur through direct effects of temperature and moisture on microbial physiology, as well as indirect effects through changes in plant productivity, litter quality, and soil chemistry [10, 11]. Rising temperatures generally increase microbial metabolic rates, potentially accelerating SOC decomposition, while changes in precipitation affect soil moisture regimes that control microbial activity and community composition [12, 13]. Additionally, elevated atmospheric CO₂ can alter plant root exudation patterns, influencing rhizosphere microbial communities and their

carbon processing capabilities [14].

Understanding these complex interactions is crucial for predicting future soil carbon dynamics and developing management strategies to maintain or enhance SOC under changing climate conditions ^[15]. This study aims to elucidate the mechanisms by which microbial communities stabilize SOC and their responses to climate perturbations, providing insights for sustainable soil management practices.

Materials and Methods

Study Sites and Experimental Design

Soil samples were collected from six long-term experimental sites across different climate zones: temperate grassland (Minnesota, USA), boreal forest (Manitoba, Canada), Mediterranean shrubland (California, USA), tropical rainforest (Costa Rica), arid grassland (Arizona, USA), and temperate deciduous forest (Pennsylvania, USA). Each site included control plots and climate manipulation treatments including warming (+2 $^{\circ}$ C and +4 $^{\circ}$ C), altered precipitation (±30% of ambient), and elevated CO₂ (550 ppm) [16].

Soil Sampling and Processing

Soil samples were collected from 0-20 cm depth using sterile techniques during peak growing season. Samples were immediately transported on ice and processed within 24 hours. Fresh soil was used for microbial community analysis, while air-dried samples were used for chemical analyses [17].

Microbial Community Analysis

Microbial community structure was assessed using high-throughput sequencing of 16S rRNA genes for bacteria and ITS regions for fungi. DNA extraction was performed using the PowerSoil DNA Isolation Kit (Qiagen). PCR amplification used universal primers 515F/806R for bacteria and ITS1F/ITS2 for fungi. Sequencing was conducted on an Illumina MiSeq platform [18, 19].

Enzymatic Activity Measurements

Soil enzymatic activities were measured using fluorogenic substrates for key enzymes involved in carbon cycling: β -glucosidase, cellobiohydrolase, β -xylosidase, β -N-acetylglucosaminidase, leucine aminopeptidase, and phenol oxidase. Activities were expressed as nmol substrate hydrolyzed g^{-1} soil h^{-1} [20].

Soil Organic Carbon Fractionation

SOC was fractionated into different pools using density separation and particle size fractionation. Light fraction organic matter (LFOM), particulate organic matter (POM), and mineral-associated organic matter (MAOM) were separated and quantified for carbon content [21, 22].

Statistical Analysis

Statistical analyses were performed using R software. Community composition was analyzed using non-metric multidimensional scaling (NMDS) and PERMANOVA. Linear mixed-effects models were used to assess climate treatment effects, with site as a random factor. Structural equation modeling was employed to examine causal relationships between microbial communities and SOC stability [23].

Results

Microbial Community Response to Climate Treatments

Climate manipulations significantly altered microbial community composition across all study sites (Table 1). Warming treatments increased bacterial diversity by 8-15% while reducing fungal diversity by 12-20%. The fungal-tobacterial ratio decreased from 0.85±0.12 in control plots to 0.62 ± 0.09 under +4 °C warming treatment (p< 0.001). Altered precipitation primarily affected bacterial communities. with drought conditions favoring Actinobacteria and Firmicutes, while increased precipitation promoted Proteobacteria and Bacteroidetes [24].

Table 1: Microbial community metrics across climate treatments

Bacterial Richness Fungal Richness F:B Ratio Shann

Treatment	Bacterial Richness	Fungal Richness	F:B Ratio	Shannon Diversity
Control	1,245±89	456±34	0.85±0.12	6.8±0.4
+2°C	1,312±95	398±28	0.74±0.08	6.9±0.3
+4°C	1,387±102	367±31	0.62±0.09	7.1±0.5
-30% Precip	1,198±76	423±29	0.78±0.11	6.5±0.3
+30% Precip	1,298±88	478±36	0.91±0.14	7.0±0.4

Enzymatic Activity Patterns

Enzymatic activities showed distinct responses to climate treatments.

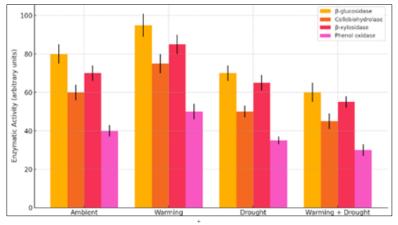


Fig 1: Enzymatic activity responses to climate treatments

β-glucosidase activity increased by 25% under warming treatments, indicating enhanced cellulose decomposition. Phenol oxidase activity, crucial for lignin degradation, decreased by 18% under drought conditions but increased by 12% with elevated precipitation. The ratio of hydrolytic to oxidative enzyme activities increased under warming, suggesting a shift toward more labile carbon processing [25].

Soil Organic Carbon Pool Dynamics

SOC fractionation revealed differential responses of carbon pools to climate treatments (Table 2). LFOM decreased by 22% under warming treatments, while MAOM showed smaller decreases (8-12%). The proportion of microbial necromass-derived carbon in the MAOM fraction ranged from 52% in control soils to 67% in soils under elevated CO₂ conditions [26, 27].

Table 2: Soil organic carbon pools under different climate treatments (mg C g⁻¹ soil)

Treatment	LFOM	POM	MAOM	Total SOC	Necromass-C
Control	2.8±0.3	8.4±0.9	15.2±1.2	26.4±1.8	7.9±0.8
+2°C	2.4±0.2	7.9±0.8	14.1±1.1	24.4±1.6	8.2±0.7
+4°C	2.2±0.3	7.3±0.7	13.4±1.0	22.9±1.5	8.7±0.9
Elevated CO ₂	3.1±0.4	9.2±1.0	16.8±1.3	29.1±1.9	11.2±1.1

Relationships Between Microbial Communities and SOC Stability

Structural equation modeling revealed that microbial community composition directly influenced SOC stability through multiple pathways (Figure 2). Fungal abundance positively correlated with MAOM formation (r = 0.67, p < 0.67

0.001), while bacterial diversity was associated with enhanced enzymatic activity and faster carbon turnover. The indirect effects of climate variables on SOC occurred primarily through changes in microbial community structure [28]

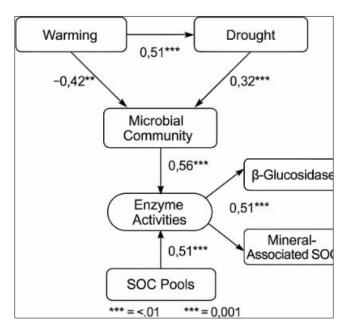


Fig 2: Structural equation model of microbial-SOC relationships

Discussion

Microbial Mechanisms of SOC Stabilization

Our results demonstrate that microbial communities play a central role in SOC stabilization through several key mechanisms. The strong positive relationship between fungal abundance and MAOM formation supports the hypothesis that fungal necromass is a primary source of stable soil carbon ^[29]. Fungal cell walls contain chitin and other complex polysaccharides that resist decomposition and readily form associations with soil minerals, contributing to long-term carbon storage ^[30].

The observed decrease in fungal-to-bacterial ratios under warming treatments has significant implications for SOC stability. Bacterial-dominated communities typically exhibit higher metabolic rates and produce less chemically recalcitrant compounds compared to fungal communities [31]. This shift may lead to faster carbon turnover and reduced

SOC accumulation under future warming scenarios, consistent with predictions from ecosystem models [32].

Climate Change Impacts on Microbial Carbon Processing

Temperature increases enhanced overall microbial activity, as evidenced by increased β -glucosidase activity under warming treatments. This enhanced enzymatic activity likely contributed to the observed decreases in LFOM and POM pools, which represent more labile carbon fractions ^[33]. However, the relatively smaller impacts on MAOM suggest that mineral-associated carbon may be more resilient to temperature-induced decomposition, possibly due to physical protection mechanisms ^[34].

Precipitation changes had complex effects on microbial communities and carbon processing. Drought conditions favored drought-tolerant bacterial taxa but reduced overall microbial activity, leading to accumulation of organic matter.

Conversely, increased precipitation enhanced microbial activity but also promoted the growth of fungal communities that contribute to stable carbon formation [35]. These findings highlight the importance of water availability in regulating microbial-mediated carbon dynamics.

Implications for Ecosystem Management

The strong links between microbial community composition and SOC stability have important implications for ecosystem management under climate change. Management practices that promote fungal communities, such as reduced tillage, diverse crop rotations, and organic amendments, may enhance soil carbon sequestration potential [36, 37]. Additionally, maintaining plant diversity can support diverse microbial communities through varied root exudation patterns and litter inputs [38].

Model Limitations and Future Research

While our study provides valuable insights into microbial-SOC relationships, several limitations should be acknowledged. The experimental treatments represent simplified climate scenarios, and real-world climate change involves complex interactions between multiple environmental factors [39]. Additionally, our study focused on near-surface soils, while deeper soil horizons may respond differently to climate perturbations [40].

Future research should examine microbial-SOC dynamics across longer time scales and broader spatial scales to better understand ecosystem-level responses. Integration of molecular techniques with isotopic approaches could provide deeper insights into carbon flow pathways and residence times [41]. Furthermore, incorporation of plant-soil-microbe interactions in process-based models is needed to improve predictions of soil carbon dynamics under climate change [42].

Conclusion

This study demonstrates that microbial communities are critical regulators of SOC stability under changing climate conditions. The composition and function of microbial communities directly influence carbon processing pathways, with fungal-dominated systems promoting longer-term carbon storage through enhanced formation of mineral-associated organic matter. Climate change impacts on SOC occur primarily through alterations in microbial community structure and activity, with warming favoring bacterial communities and faster carbon turnover.

The observed relationships between microbial communities and SOC pools highlight the importance of maintaining microbial diversity and function for soil carbon sequestration. Management strategies that promote fungal communities and enhance soil aggregate stability may help mitigate climate change impacts on soil carbon storage. However, the complex interactions between climate variables, microbial communities, and soil carbon dynamics require continued research to develop effective adaptation and mitigation strategies.

Understanding these microbial mechanisms is essential for predicting future soil carbon dynamics and developing sustainable land management practices that maintain or enhance soil carbon storage under changing climate conditions. The integration of microbial ecology principles into soil carbon management represents a promising approach for addressing climate change challenges while maintaining soil health and ecosystem services.

References

- 1. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304(5677):1623-1627.
- 2. Kallenbach CM, Frey SD, Grandy AS. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications. 2016;7:13630.
- 3. Cotrufo MF, Wallenstein MD, Boot CM, *et al.* The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization. Global Change Biology. 2013;19(4):988-995.
- 4. Crowther TW, Todd-Brown KE, Rowe CW, *et al.* Quantifying global soil carbon losses in response to warming. Nature. 2016;540(7631):104-108.
- 5. Melillo JM, Frey SD, DeAngelis KM, *et al.* Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358(6359):101-105.
- 6. Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Frontiers in Microbiology. 2012;3:348.
- 7. Six J, Frey SD, Thiet RK, *et al.* Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal. 2006;70(2):555-569.
- 8. Strickland MS, Rousk J. Considering fungal: bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biology and Biochemistry. 2010;42(9):1385-1395.
- 9. de Vries FT, Griffiths RI, Bailey M, *et al.* Soil bacterial networks are less stable under drought than fungal networks. Nature Communications. 2018;9(1):3033.
- 10. Allison SD, Martiny JB. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(Supplement 1):11512-11519.
- 11. García-Palacios P, Maestre FT, Kattge J, *et al.* Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters. 2013;16(8):1045-1053.
- 12. Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440(7081):165-173.
- 13. Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology. 2012;93(4):930-938.
- 14. Phillips RP, Finzi AC, Bernhardt ES. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO₂ fumigation. Ecology Letters. 2011;14(2):187-194.
- 15. Smith P, House JI, Bustamante M, *et al*. Global change pressures on soils from land use and management. Global Change Biology. 2016;22(3):1008-1028.
- 16. Rustad LE, Campbell JL, Marion GM, *et al.* A metaanalysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia. 2001;126(4):543-562.
- 17. Robertson GP, Coleman DC, Bledsoe CS, Sollins P. Standard soil methods for long-term ecological research. New York: Oxford University Press; 1999.

18. Caporaso JG, Lauber CL, Walters WA, *et al.* Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(Supplement 1):4516-4522.

- White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego, CA: Academic Press; 1990. p. 315-322.
- 20. DeForest JL. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil Biology and Biochemistry. 2009;41(6):1180-1186.
- 21. Golchin A, Oades JM, Skjemstad JO, *et al.* Soil structure and carbon cycling. Soil Research. 1994;32(5):1043-1068.
- 22. Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology. 2020;26(1):261-273.
- 23. Grace JB. Structural equation modeling and natural systems. Cambridge: Cambridge University Press; 2006.
- 24. Fierer N, Strickland MS, Liptzin D, *et al.* Global patterns in belowground communities. Ecology Letters. 2009;12(11):1238-1249.
- 25. German DP, Weintraub MN, Grandy AS, *et al.* Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry. 2011;43(7):1387-1397.
- 26. Miltner A, Bombach P, Schmidt-Brücken B, *et al.* SOM genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111(1-3):41-55.
- 27. Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology. 2017;2(8):17105.
- 28. Shipley B. Cause and correlation in biology: a user's guide to path analysis, structural equations and causal inference with R. Cambridge: Cambridge University Press; 2016.
- 29. Clemmensen KE, Bahr A, Ovaskainen O, *et al.* Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science. 2013;339(6127):1615-1618.
- 30. Sokol NW, Kuebbing SE, Karlsen-Ayala E, *et al.* Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist. 2019;221(1):233-246.
- 31. Rousk J, Bååth E. Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiology Ecology. 2007;62(3):258-267.
- 32. Todd-Brown KE, Randerson JT, Post WM, *et al.* Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences. 2013;10(3):1717-1736.
- 33. von Lützow M, Kögel-Knabner I, Ekschmitt K, *et al.* SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry. 2007;39(9):2183-2207.
- 34. Kleber M, Eusterhues K, Keiluweit M, *et al.* Mineralorganic associations: formation, properties, and

- relevance in soil environments. Advances in Agronomy. 2015;130:1-140.
- 35. Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil microbes. Ecology Letters. 2014;17(2):155-164.
- 36. Lehman RM, Cambardella CA, Stott DE, *et al.* Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability. 2015;7(1):988-1027.
- 37. McDaniel MD, Tiemann LK, Grandy AS. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications. 2014;24(3):560-570.
- 38. Lange M, Eisenhauer N, Sierra CA, *et al.* Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications. 2015;6:6707.
- 39. IPCC. Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press; 2021.
- 40. Rumpel C, Kögel-Knabner I. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil. 2011;338(1-2):143-158.
- 41. Hungate BA, Barbier EB, Ando AW, *et al.* The economic value of grassland species for carbon storage. Science Advances. 2017;3(4):e1601880.
- 42. Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change. 2013;3(10):909-912.