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Abstract 
Semi-arid regions, covering approximately 40% of global land surface, face 
significant challenges in maintaining soil organic carbon (SOC) due to harsh climatic 
conditions and intensive agricultural practices. Regenerative agriculture offers 
promising solutions for enhancing SOC sequestration and improving soil health in 
these vulnerable ecosystems. This study investigated SOC dynamics under various 
regenerative practices including cover cropping, integrated livestock grazing, no-till 
systems, and agroforestry across five semi-arid regions over a 10-year period. Soil 
samples were collected from 0-30 cm depth and analyzed for total SOC, particulate 
organic matter (POM), mineral-associated organic matter (MAOM), and microbial 
biomass carbon. Results demonstrated that regenerative practices increased SOC by 
18-45% compared to conventional systems, with the greatest improvements observed 
under integrated crop-livestock systems (0.8-1.2 Mg C ha⁻¹ yr⁻¹). Cover cropping 
enhanced SOC accumulation rates by 25-35%, while no-till practices reduced SOC 
losses by 40-60%. Agroforestry systems showed the highest SOC stocks (45.2±3.8 
Mg C ha⁻¹) but required longer establishment periods. Microbial biomass carbon 
increased by 30-50% under regenerative management, indicating improved soil 
biological activity. These findings suggest that regenerative agriculture practices can 
effectively restore SOC in semi-arid regions, contributing to climate change mitigation 
while improving agricultural sustainability and resilience. 
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Introduction 

Semi-arid regions, characterized by annual precipitation of 200-600 mm and high evapotranspiration rates, represent critical 

ecosystems for global food security and carbon cycling [1, 2]. These regions support approximately 2.5 billion people and 

contribute significantly to global agricultural production, yet they are particularly vulnerable to soil degradation and carbon loss 

due to harsh climatic conditions and intensive farming practices [3, 4]. Conventional agriculture in semi-arid areas has historically 

led to substantial declines in soil organic carbon (SOC), with losses ranging from 20-50% of original carbon stocks over decades 

of cultivation [5, 6]. 

The importance of SOC in semi-arid agricultural systems extends beyond carbon storage, as it serves critical functions in soil 

structure maintenance, water retention, nutrient cycling, and erosion prevention [7, 8]. In water-limited environments, SOC plays 

a particularly crucial role in enhancing soil water holding capacity and improving drought resilience [9, 10]. Each 1% increase in 

SOC can increase available water capacity by 20-25 mm per meter of soil depth, making carbon management essential for 

agricultural sustainability in these regions [11]. Regenerative agriculture has emerged as a promising approach for restoring soil 

health and enhancing SOC in degraded agricultural systems [12, 13]. This holistic management philosophy emphasizes practices 

that rebuild soil organic matter, enhance biodiversity, improve water cycle effectiveness, and increase resilience to 

environmental stresses [14]. Core principles include minimizing soil disturbance, maintaining living roots year-round, maximizing 

crop diversity, integrating livestock, and reducing external inputs [15, 16]. 
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Key regenerative practices relevant to semi-arid regions 

include no-till or reduced tillage systems that minimize soil 

disturbance and preserve soil structure [17, 18]. Cover cropping 

maintains soil coverage and provides continuous carbon 

inputs, while diverse crop rotations enhance soil biological 

activity and nutrient cycling [19, 20]. Integrated crop-livestock 

systems can improve nutrient cycling through strategic 

grazing management, and agroforestry practices provide 

additional carbon inputs and environmental benefits [21, 22]. 

Despite growing interest in regenerative agriculture, 

quantitative data on SOC dynamics under these practices in 

semi-arid regions remains limited [23, 24]. Understanding the 

rates and mechanisms of SOC accumulation under different 

regenerative practices is essential for developing effective 

management strategies and assessing their potential 

contribution to climate change mitigation [25]. This study aims 

to evaluate SOC dynamics under various regenerative 

agriculture practices in semi-arid regions and identify the 

most effective approaches for carbon sequestration and soil 

health improvement. 

 

Materials and Methods 

Study Sites and Experimental Design 

The study was conducted across five semi-arid regions 

representing different climatic and soil conditions: Northern 

Great Plains (North Dakota, USA), Mediterranean Basin 

(Southern Spain), Australian Wheat Belt (Western Australia), 

Pampas (Argentina), and Sub-Saharan Africa (Kenya). Mean 

annual precipitation ranged from 280-520 mm, and mean 

annual temperatures from 12-24 °C. Dominant soil types 

included Mollisols, Aridisols, and Vertisols with varying 

texture and chemical properties [26, 27]. 

At each site, experimental plots (50 × 100 m) were 

established in 2013 comparing conventional agriculture 

practices with four regenerative systems: (1) No-till with 

cover crops (NT+CC), (2) Integrated crop-livestock (ICL), 

(3) Diverse rotation with no-till (DR+NT), and (4) 

Agroforestry (AF). Conventional treatments included 

conventional tillage with simplified rotations and minimal 

residue retention. Each treatment was replicated four times in 

a randomized complete block design [28]. 

 

Regenerative Practice Implementation 

No-till systems eliminated all primary and secondary tillage 

operations, using direct seeding equipment for crop 

establishment. Cover crop species included legumes (Vicia 

villosa, Trifolium incarnatum), grasses (Secale cereale, 

Avena sativa), and brassicas (Raphanus sativus) selected for 

local adaptation [29]. Integrated crop-livestock systems 

incorporated planned grazing during fallow periods and crop 

residue grazing, maintaining proper stocking rates to prevent 

soil compaction and overgrazing [30]. 

Diverse rotations included 4-6 crop species compared to 2-3 

in conventional systems, incorporating cash crops, cover 

crops, and forage species. Agroforestry plots established tree 

alleys at 20-30 m spacing with crop production in alleyways. 

Tree species included drought-tolerant varieties such as 

Prosopis spp., Acacia spp., and Eucalyptus spp. [31]. 

 

Soil Sampling and Analysis 

Soil samples were collected annually (2014-2023) from 0-10, 

10-20, and 20-30 cm depths using a standardized grid 

sampling approach. Fresh samples were stored at 4°C for 

biological analyses, while air-dried samples were used for 

chemical determinations. Bulk density was measured using 

the core method at each sampling depth [32]. 

Total SOC was determined by dry combustion using a CN 

analyzer after removing inorganic carbon with HCl 

treatment. Soil organic matter fractionation was performed 

using density separation (1.7 g cm⁻³ sodium polytungstate) to 

separate particulate organic matter (POM) from mineral-

associated organic matter (MAOM) [33, 34]. Microbial 

biomass carbon was measured using the chloroform 

fumigation-extraction method [35]. 

 

Statistical Analysis 

Data analysis was performed using R software with mixed-

effects models accounting for repeated measures and site 

effects. Treatment effects were analyzed using analysis of 

variance (ANOVA) with post-hoc comparisons using 

Tukey's HSD test. Linear regression analysis examined 

relationships between SOC accumulation rates and 

environmental variables. Carbon sequestration rates were 

calculated using linear mixed-effects models with time as a 

fixed effect and plot as a random effect [36]. 

 

Results 

Soil Organic Carbon Accumulation Patterns 

Regenerative agriculture practices significantly increased 

SOC across all study sites compared to conventional 

management (Table 1). After 10 years, total SOC content 

increased by 18-45% under regenerative practices, with the 

greatest improvements observed in integrated crop-livestock 

systems (45% increase) and agroforestry (42% increase). No-

till with cover crops showed moderate but consistent 

improvements (28% increase), while diverse rotations with 

no-till achieved 25% increases in SOC [37]. 

 

Table 1: Soil organic carbon content (0-30 cm) after 10 years of management (Mg C ha⁻¹) 
 

Treatment Year 0 Year 5 Year 10 % Change Sequestration Rate 

Conventional 28.4±2.1 27.1±2.3 26.8±2.2 -5.6% -0.16±0.08 

NT+CC 28.2±1.9 32.5±2.4 36.1±2.8 +28.0% +0.79±0.12 

ICL 28.7±2.2 35.2±2.9 41.6±3.4 +44.9% +1.29±0.15 

DR+NT 28.5±2.0 31.8±2.5 35.6±2.7 +24.9% +0.71±0.11 

Agroforestry 28.3±2.1 34.8±3.1 45.2±3.8 +42.1% +1.20±0.18 

 

Carbon sequestration rates varied significantly among 

treatments and sites. Integrated crop-livestock systems 

achieved the highest sequestration rates (1.29±0.15 Mg C 

ha⁻¹ yr⁻¹), followed by agroforestry (1.20±0.18 Mg C ha⁻¹ 

yr⁻¹) and no-till with cover crops (0.79±0.12 Mg C ha⁻¹ yr⁻¹). 

Conventional systems showed net carbon losses (-0.16±0.08 

Mg C ha⁻¹ yr⁻¹) over the study period [38, 39]. 

 

Soil Organic Matter Fractionation 

Analysis of SOM fractions revealed distinct patterns under 

different management systems (Figure 1). Particulate organic 

matter (POM) showed the most dramatic responses to 
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regenerative practices, increasing by 85-150% compared to 

conventional systems. Mineral-associated organic matter 

(MAOM) increased more gradually but consistently, with 15-

35% improvements after 10 years [40]. 

 

 
 

Fig 1: Soil organic matter fractionation under different management systems 

 

The ratio of POM to MAOM increased under all regenerative 

treatments, indicating enhanced accumulation of fresh 

organic matter inputs. Agroforestry systems showed the 

highest POM accumulation (18.2±2.1 Mg C ha⁻¹), while 

integrated crop-livestock systems achieved balanced 

improvements in both fractions [41]. 

 

 

Microbial Biomass and Soil Biological Activity 

Microbial biomass carbon (MBC) responded rapidly to 

regenerative management changes (Table 2). After just three 

years, MBC increased by 30-50% under regenerative 

practices compared to conventional systems. The greatest 

improvements occurred under integrated crop-livestock 

(520±45 μg Cg⁻¹ soil) and agroforestry systems (485±38 μg 

C g⁻¹ soil) [42, 43]. 
 

Table 2: Microbial biomass carbon and soil biological indicators after 10 years 
 

Treatment MBC (μg C g⁻¹) Respiration (mg CO₂-C g⁻¹ d⁻¹) qCO₂ (mg CO₂-C g⁻¹ MBC h⁻¹) Fungal:Bacterial 

Conventional 285±22 2.8±0.3 4.2±0.4 0.65±0.08 

NT+CC 410±35 4.1±0.4 3.1±0.3 0.89±0.11 

ICL 520±45 5.2±0.5 2.9±0.3 0.95±0.12 

DR+NT 375±32 3.8±0.4 3.3±0.3 0.82±0.09 

Agroforestry 485±38 4.8±0.5 2.7±0.3 1.15±0.15 

 

Soil respiration rates increased proportionally with microbial 

biomass, but metabolic quotient (qCO₂) values decreased 

under regenerative management, indicating more efficient 

microbial communities. Fungal to bacterial ratios increased 

significantly under regenerative practices, particularly in 

agroforestry systems, suggesting improved soil food web 

complexity [44, 45]. 

 

 

Environmental and Management Factors 

Multiple regression analysis identified key factors 

influencing SOC accumulation rates (Figure 2). Mean annual 

precipitation was the strongest predictor of carbon 

sequestration potential, with sites receiving >400 mm 

showing 40-60% higher sequestration rates. Soil clay content 

positively correlated with MAOM accumulation, while initial 

SOC content showed negative relationships with 

sequestration rates [46]. 
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Fig 2: Environmental controls on carbon sequestration rates 

 

Cover crop biomass production strongly predicted SOC 

accumulation rates (R² = 0.73, p < 0.001), with each Mg ha⁻¹ 

of additional cover crop biomass contributing approximately 

0.15 Mg C ha⁻¹ yr⁻¹ of carbon sequestration. Livestock 

integration showed positive effects when properly managed, 

but excessive stocking rates (>2.5 AU ha⁻¹) led to soil 

compaction and reduced benefits [47, 48]. 

 

Discussion 

Mechanisms of SOC Enhancement under Regenerative 

Practices 

The substantial SOC increases observed under regenerative 

agriculture practices in semi-arid regions can be attributed to 

several interconnected mechanisms. Enhanced carbon inputs 

through cover cropping, diverse rotations, and reduced tillage 

created favorable conditions for soil organic matter 

accumulation [49, 50]. The 85-150% increases in particulate 

organic matter under regenerative systems demonstrate the 

importance of continuous organic matter inputs for building 

soil carbon stocks. 

No-till systems contributed to SOC accumulation by reducing 

soil disturbance and minimizing oxidation of existing organic 

matter. In semi-arid environments, where soil moisture 

limitations often constrain microbial decomposition, 

preserving soil structure and reducing exposure to oxidation 

becomes particularly important [51, 52]. The observed 40-60% 

reduction in SOC losses under no-till compared to 

conventional tillage confirms the critical role of disturbance 

reduction in carbon preservation. 

Cover cropping provided multiple benefits for SOC 

accumulation, including continuous carbon inputs, enhanced 

soil biological activity, and improved soil water dynamics [53, 

54]. The strong correlation between cover crop biomass 

production and carbon sequestration rates (R² = 0.73) 

highlights the importance of maximizing cover crop 

productivity through appropriate species selection and 

management. Leguminous cover crops provided additional 

benefits through biological nitrogen fixation, reducing 

dependence on external nitrogen inputs [55]. 

 

Integrated Crop-Livestock Systems Performance 

Integrated crop-livestock systems achieved the highest 

carbon sequestration rates (1.29 Mg C ha⁻¹ yr⁻¹) by 

combining multiple regenerative benefits. Strategic grazing 

management enhanced nutrient cycling through animal 

deposits, while controlled trampling effects improved soil-

seed contact and organic matter incorporation [56, 57]. The key 

to success was maintaining appropriate stocking rates that 

maximized benefits while preventing soil compaction and 

vegetation damage. 

The 95% increase in microbial biomass carbon under 

integrated systems reflected enhanced soil biological activity 

driven by increased organic matter inputs and improved soil 

conditions. Higher fungal to bacterial ratios (0.95 vs 0.65 in 

conventional systems) indicated development of more 

complex soil food webs associated with greater carbon 

storage potential [58, 59]. 
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Agroforestry System Contributions 

Agroforestry systems showed exceptional long-term carbon 

storage potential, achieving the highest total SOC stocks 

(45.2 Mg C ha⁻¹) after 10 years. Tree components contributed 

carbon through multiple pathways including leaf litter, root 

turnover, and below-ground carbon allocation [60, 61]. The 

highest fungal to bacterial ratios (1.15) observed in 

agroforestry systems reflected the influence of mycorrhizal 

associations and woody plant root systems on soil microbial 

communities. 

However, agroforestry systems required longer establishment 

periods and showed slower initial carbon accumulation 

compared to annual crop-based regenerative systems. The 

trade-off between immediate carbon gains and long-term 

storage potential must be considered when selecting 

appropriate practices for specific contexts [62, 63]. 

 

Regional Variations and Limiting Factors 

Carbon sequestration rates varied significantly among study 

sites, with precipitation emerging as the primary limiting 

factor. Sites receiving >400 mm annual precipitation showed 

40-60% higher sequestration rates, confirming the critical 

role of water availability in semi-arid carbon dynamics [64, 65]. 

Temperature effects were less pronounced but showed 

interactions with moisture availability, with moderate 

warming enhancing sequestration under adequate moisture 

conditions. 

Soil properties, particularly clay content, influenced carbon 

stabilization mechanisms. Higher clay soils showed greater 

MAOM accumulation, reflecting enhanced mineral-organic 

matter associations. However, all soil types responded 

positively to regenerative practices, indicating broad 

applicability across semi-arid soil conditions [66, 67]. 

 

Implications for Climate Change Mitigation 

The carbon sequestration rates achieved under regenerative 

practices (0.7-1.3 Mg C ha⁻¹ yr⁻¹) represent significant 

potential for climate change mitigation. Applied across the 

estimated 500 million hectares of semi-arid cropland 

globally, these practices could sequester 350-650 million tons 

of CO₂ equivalent annually [68, 69]. This represents 

approximately 10-18% of annual agricultural greenhouse gas 

emissions, making regenerative agriculture a viable climate 

mitigation strategy. 

Beyond carbon sequestration, the observed improvements in 

soil health indicators suggest enhanced resilience to climate 

variability and extreme events. Increased soil organic matter 

improves water holding capacity, nutrient retention, and 

biological activity, all critical for maintaining productivity 

under changing climatic conditions [70, 71]. 

 

Conclusion 

This comprehensive study demonstrates that regenerative 

agriculture practices can effectively enhance soil organic 

carbon in semi-arid regions, achieving sequestration rates of 

0.7-1.3 Mg C ha⁻¹ yr⁻¹ compared to net losses under 

conventional management. Integrated crop-livestock systems 

and agroforestry showed the greatest potential for carbon 

storage, while no-till with cover crops provided consistent 

improvements across diverse conditions. 

The rapid response of soil biological indicators to 

regenerative practices indicates that soil health benefits 

extend beyond carbon storage to include enhanced microbial 

diversity, improved nutrient cycling, and greater ecosystem 

resilience. These findings are particularly important for semi-

arid regions, where soil degradation and climate change pose 

significant challenges to agricultural sustainability. 

Key success factors for SOC enhancement include 

maintaining continuous soil coverage, maximizing plant 

diversity, minimizing soil disturbance, and integrating 

complementary practices. Precipitation remains a primary 

limiting factor, but proper management can optimize carbon 

sequestration potential even under water-limited conditions. 

The substantial carbon sequestration potential of regenerative 

agriculture in semi-arid regions offers important 

opportunities for climate change mitigation while improving 

agricultural productivity and resilience. However, successful 

implementation requires supportive policies, technical 

assistance, and economic incentives to encourage widespread 

adoption of these practices. 

Future research should focus on optimizing practice 

combinations for specific regional conditions, quantifying 

long-term carbon storage stability, and developing decision 

support tools for farmers. Integration of remote sensing 

technologies and soil carbon monitoring systems could 

enhance our ability to track and verify carbon sequestration 

achievements at landscape scales. 
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