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Abstract 
Soil organic carbon (SOC) represents a critical component of global carbon cycling 
and serves as a fundamental indicator of soil health and agricultural sustainability. 
This study integrates remote sensing data with machine learning algorithms to quantify 
SOC changes in agricultural croplands under varying climatic conditions. We 
employed multi-temporal Landsat 8 OLI and Sentinel-2 MSI imagery combined with 
climate variables to develop predictive models for SOC estimation across diverse 
cropping systems. Random Forest (RF), Support Vector Machine (SVM), and 
Artificial Neural Network (ANN) algorithms were evaluated using field-collected 
SOC measurements from 450 sampling sites across three distinct agro-climatic zones 
over a five-year period (2018-2022). The RF model demonstrated superior 
performance with R² = 0.78 and RMSE = 2.34 g kg⁻¹, followed by ANN (R² = 0.75, 
RMSE = 2.58 g kg⁻¹) and SVM (R² = 0.69, RMSE = 2.91 g kg⁻¹). Spectral vegetation 
indices, particularly the Normalized Difference Vegetation Index (NDVI) and Soil 
Adjusted Vegetation Index (SAVI), showed strong correlations with SOC content (r > 
0.65). Climate variables including temperature and precipitation patterns significantly 
influenced SOC dynamics, with temperature showing negative correlations (-0.58) and 
precipitation showing positive correlations (0.43) with SOC accumulation. The 
integrated approach successfully mapped SOC changes at 30-meter spatial resolution, 
revealing annual SOC loss rates ranging from 0.2-0.8% across different land 
management practices. These findings provide valuable insights for precision 
agriculture applications and carbon sequestration monitoring in agricultural 
landscapes. 
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Introduction 

Soil organic carbon constitutes the largest terrestrial carbon pool, containing approximately 1,500 Pg of carbon globally, which 

represents nearly three times the atmospheric carbon pool [1]. Agricultural soils play a crucial role in global carbon cycling, with 

croplands covering approximately 12% of the Earth's land surface and serving as both sources and sinks of atmospheric carbon 

dioxide [2]. The dynamics of SOC in agricultural systems are inherently complex, influenced by multiple interacting factors 

including climate conditions, soil properties, vegetation cover, and management practices [3]. 

Climate change poses significant challenges to agricultural sustainability, with rising temperatures, altered precipitation patterns, 

and increased frequency of extreme weather events directly impacting soil carbon dynamics [4]. Understanding SOC changes 

under climate variability is essential for developing effective climate adaptation and mitigation strategies in agricultural systems 

[5]. Traditional field-based methods for SOC assessment, while accurate, are time-consuming, expensive, and limited in spatial 

coverage, making them inadequate for large-scale monitoring programs [6]. 

Remote sensing technology offers unprecedented opportunities for spatially explicit monitoring of soil properties across multiple 

scales and time periods [7]. Satellite-based sensors provide consistent, repeatable observations that can capture temporal 
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variations in vegetation cover, soil moisture, and other 

parameters related to carbon cycling processes [8]. The 

integration of remote sensing data with machine learning 

algorithms has emerged as a powerful approach for predictive 

modeling of soil properties, offering improved accuracy and 

computational efficiency compared to traditional statistical 

methods [9]. 

Recent advances in machine learning techniques, including 

ensemble methods, deep learning, and hybrid algorithms, 

have shown remarkable success in environmental modeling 

applications [10]. These methods can effectively handle non-

linear relationships, high-dimensional datasets, and complex 

interactions between predictor variables, making them 

particularly suitable for SOC estimation [11]. The combination 

of multi-spectral satellite imagery with climate data provides 

a comprehensive framework for understanding SOC 

dynamics under changing environmental conditions [12]. 

The objective of this study is to develop and validate an 

integrated remote sensing and machine learning framework 

for estimating SOC changes in croplands under climate 

variability. Specific aims include: (1) evaluating the 

performance of different machine learning algorithms for 

SOC prediction; (2) identifying key spectral and climatic 

variables influencing SOC dynamics; (3) quantifying spatial 

and temporal patterns of SOC changes across diverse 

agricultural landscapes; and (4) assessing the impact of 

climate variability on SOC accumulation and loss rates. 

 

Materials and Methods 

Study Area 

The study was conducted across three distinct agro-climatic 

zones representing diverse environmental conditions and 

cropping systems. Zone A encompasses temperate 

continental climate conditions (45°N-47°N, 95°W-98°W) 

with corn-soybean rotation systems. Zone B represents semi-

arid Mediterranean climate (38°N-40°N, 120°W-122°W) 

dominated by wheat and barley cultivation. Zone C covers 

humid subtropical conditions (32°N-34°N, 83°W-85°W) 

with cotton and peanut production systems. Each zone covers 

approximately 10,000 km² with varying topography, soil 

types, and management practices. 

 

Field Data Collection 

Soil samples were collected from 450 georeferenced 

sampling sites (150 sites per zone) using stratified random 

sampling approach. Sampling was conducted annually during 

post-harvest periods (October-November) from 2018 to 

2022. At each site, composite soil samples were collected 

from 0-30 cm depth using a soil auger with five sub-samples 

within a 10 m × 10 m plot. SOC content was determined using 

the Walkley-Black wet oxidation method with dichromate 

digestion, following standard protocols [13]. Quality control 

measures included duplicate analysis for 10% of samples and 

certified reference materials. 

 

Remote Sensing Data 

Multi-temporal satellite imagery was acquired from Landsat 

8 OLI and Sentinel-2 MSI sensors for the study period. 

Cloud-free images (< 10% cloud cover) were selected for 

analysis, resulting in 30-45 images per year for each zone. 

Preprocessing included atmospheric correction using the 

Dark Object Subtraction method, geometric correction, and 

radiometric calibration [14]. Spectral vegetation indices were 

calculated including NDVI, SAVI, Enhanced Vegetation 

Index (EVI), and Normalized Difference Water Index 

(NDWI). 

 

Climate Data 

Climate variables were obtained from meteorological stations 

and gridded datasets including temperature (minimum, 

maximum, mean), precipitation, relative humidity, solar 

radiation, and evapotranspiration. Monthly climate data were 

aggregated to seasonal and annual scales. Climate indices 

including Growing Degree Days (GDD), Precipitation 

Effectiveness Index (PEI), and Aridity Index (AI) were 

calculated to characterize climatic conditions [15]. 

 

Machine Learning Algorithms 

Three machine learning algorithms were implemented for 

SOC prediction: 

 Random Forest (RF): An ensemble method combining 

multiple decision trees with bootstrap aggregation. 

Model parameters included 500 trees, minimum samples 

split = 5, and maximum depth = 10 [16]. 

 Support Vector Machine (SVM): A kernel-based 

algorithm using Radial Basis Function (RBF) kernel 

with optimized hyperparameters (C = 100, γ = 0.01) 

determined through grid search cross-validation [17]. 

 Artificial Neural Network (ANN): A multi-layer 

perceptron with two hidden layers (64 and 32 neurons), 

ReLU activation function, and Adam optimizer with 

learning rate = 0.001 [18]. 

 Model Development and Validation 

The dataset was randomly split into training (70%) and 

testing (30%) subsets while maintaining spatial and 

temporal stratification. Feature selection was performed 

using recursive feature elimination with cross-

validation. Model performance was evaluated using 

coefficient of determination (R²), root mean square error 

(RMSE), mean absolute error (MAE), and bias. Ten-fold 

cross-validation was implemented to assess model 

robustness and reduce overfitting. 

 

Results 

Field SOC Measurements 

Field measurements revealed significant spatial and temporal 

variability in SOC content across the study zones (Table 1). 

Zone A exhibited the highest mean SOC content (24.3±6.8 g 

kg⁻¹), followed by Zone C (18.7±5.2 g kg⁻¹) and Zone B 

(12.4±4.1 g kg⁻¹). Temporal analysis indicated declining 

SOC trends in all zones, with annual loss rates of 0.31%, 

0.64%, and 0.47% for Zones A, B, and C, respectively. 
 

Table 1: Descriptive statistics of soil organic carbon content across study zones 
 

Zone Climate Type Mean SOC (g kg⁻¹) SD Min Max CV (%) 

A Temperate 24.3 6.8 11.2 42.1 28.0 

B Semi-arid 12.4 4.1 5.8 23.7 33.1 

C Subtropical 18.7 5.2 8.3 31.4 27.8 
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Remote Sensing Analysis 

Spectral analysis revealed strong relationships between 

vegetation indices and SOC content (Table 2). NDVI 

demonstrated the strongest correlation (r = 0.68, p< 0.001), 

followed by SAVI (r = 0.65, p< 0.001) and EVI (r = 0.62, p< 

0.001). Seasonal variations in spectral responses were 

observed, with peak correlations occurring during mid-

growing season (June-July). Multi-temporal analysis 

revealed that spring and summer NDVI values were most 

predictive of SOC content. 
 

Table 2: Correlation coefficients between spectral indices and SOC content 
 

Spectral Index Zone A Zone B Zone C Overall 

NDVI 0.71* 0.63* 0.69* 0.68* 

SAVI 0.68* 0.59* 0.67* 0.65* 

EVI 0.66* 0.55* 0.64* 0.62* 

NDWI 0.52* 0.48* 0.56* 0.52* 
*Significant at p < 0.001 

 

Machine Learning Model Performance 

Random Forest achieved the best overall performance across 

all study zones with R² = 0.78, RMSE = 2.34 g kg⁻¹, and MAE 

= 1.87 g kg⁻¹ (Figure 1). ANN showed comparable 

performance (R² = 0.75, RMSE = 2.58 g kg⁻¹) but required 

longer computational time. SVM demonstrated lower 

accuracy (R² = 0.69, RMSE = 2.91 g kg⁻¹) particularly in 

heterogeneous landscapes. 
 

Table 3: Machine learning model performance metrics 
 

Algorithm R² RMSE (g kg⁻¹) MAE (g kg⁻¹) Bias (g kg⁻¹) 

Random Forest 0.78 2.34 1.87 0.12 

ANN 0.75 2.58 2.03 -0.08 

SVM 0.69 2.91 2.41 0.34 

 

Feature importance analysis revealed that NDVI, mean 

annual temperature, and precipitation were the most 

influential predictors, contributing 23%, 18%, and 15% 

respectively to model performance. 
 

 
 

Fig 1: Performance Of Machine Learning Models Across All Study Zone. 

 

Climate Impact Assessment 

Climate variables significantly influenced SOC dynamics 

across all study zones. Mean annual temperature showed 

negative correlations with SOC content (r = -0.58, p < 0.001), 

while precipitation exhibited positive relationships (r = 0.43, 

p < 0.001). Extreme temperature events (> 35°C for > 5 

consecutive days) resulted in accelerated SOC 

decomposition, with losses of 2-4% observed in affected 

areas. Drought conditions (precipitation < 50% of long-term 

average) led to reduced plant productivity and lower SOC 

inputs. 

 

Spatial and Temporal SOC Mapping 

The optimized RF model was applied to generate annual SOC 

maps at 30-meter resolution for the entire study period. 

Spatial analysis revealed distinct patterns of SOC distribution 

related to topography, land use, and management practices 

(Figure 2). Higher SOC concentrations were observed in 

valleys and lower slope positions, while ridges and steep 

slopes showed lower values. Conservation tillage practices 

resulted in 15-25% higher SOC content compared to 

conventional tillage systems. 

Temporal analysis indicated declining SOC trends in 78% of 

the study area, with the most significant losses occurring in 
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semi-arid regions. Areas under intensive cultivation showed 

annual SOC loss rates of 0.5-0.8%, while grassland 

conversions and conservation practices demonstrated SOC 

gains of 0.2-0.4% annually. 
 

 

 
 

Fig 2: Annual SOC Concentrations At 30-Meter Resolution 

 

Discussion 

The integration of remote sensing data with machine learning 

algorithms demonstrated significant potential for accurate 

SOC estimation across diverse agricultural landscapes. The 

superior performance of the Random Forest algorithm aligns 

with previous studies highlighting its effectiveness in 

handling non-linear relationships and high-dimensional 

environmental datasets [19]. The ensemble nature of RF 

provides robustness against overfitting and improved 

generalization capabilities compared to individual tree-based 

models [20]. 

The strong correlation between vegetation indices and SOC 

content reflects the fundamental relationship between plant 

productivity and soil carbon inputs [21]. NDVI emerged as the 

most predictive spectral variable, consistent with its 

established role as an indicator of biomass production and 

photosynthetic activity [22]. The seasonal variation in spectral-

SOC relationships emphasizes the importance of multi-

temporal analysis for capturing dynamic processes in 

agricultural systems [23]. 

Climate variables significantly influenced SOC dynamics, 

with temperature acting as a primary driver of decomposition 

processes and precipitation affecting plant productivity and 

carbon inputs [24]. The negative correlation between 

temperature and SOC content supports the temperature-

decomposition hypothesis, where higher temperatures 

accelerate microbial activity and organic matter breakdown 

[25]. The positive relationship between precipitation and SOC 

reflects increased plant productivity and reduced 

decomposition rates under adequate moisture conditions [26]. 

The observed spatial patterns of SOC distribution align with 

topographic and hydrological controls on soil development 

and carbon accumulation [27]. Lower landscape positions 

typically receive additional water and sediment inputs, 

creating favorable conditions for SOC accumulation [28]. The 

influence of management practices on SOC content 

demonstrates the potential for agricultural interventions to 

enhance carbon sequestration [29]. 

The declining SOC trends observed across study zones raise 

concerns about long-term soil health and agricultural 

sustainability [30]. The higher loss rates in semi-arid regions 

reflect the vulnerability of these systems to climate change 

impacts and the need for adaptive management strategies. 

Conservation practices including cover cropping, reduced 

tillage, and integrated nutrient management show promise for 

reversing SOC decline trends. 

 

Conclusion 

This study successfully demonstrated the effectiveness of 

integrating remote sensing data with machine learning 

algorithms for estimating SOC changes in agricultural 

croplands under climate variability. The Random Forest 

algorithm achieved the highest accuracy (R² = 0.78) among 

tested methods, providing reliable SOC predictions at 30-

meter spatial resolution. Key findings include: 

1. Strong relationships exist between vegetation indices 

(particularly NDVI) and SOC content, enabling remote 

estimation of soil carbon stocks. 

2. Climate variables, especially temperature and 

precipitation, significantly influence SOC dynamics, 

with temperature showing negative effects and 

precipitation showing positive effects on carbon 

accumulation. 

3. Spatial analysis revealed distinct patterns of SOC 

distribution related to topography and management 

practices, with conservation systems showing higher 

carbon retention. 

4. Temporal analysis indicated declining SOC trends across 

78% of the study area, with annual loss rates of 0.2-0.8% 

depending on climate zone and management practices. 
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5. The developed framework provides valuable tools for 

precision agriculture applications, carbon accounting 

programs, and climate change mitigation strategies. 

Future research should focus on incorporating additional 

remote sensing products, exploring deep learning 

approaches, and extending the analysis to larger spatial 

and temporal scales. The integration of soil process 

models with machine learning algorithms offers 

promising directions for improving prediction accuracy 

and understanding mechanistic relationships. 
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