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Article Info Abstract N .
Soil organic carbon (SOC) represents a critical component of global carbon cycling

and serves as a fundamental indicator of soil health and agricultural sustainability.

P - ISSN: 3051-3448 This study integrates remote sensing data with machine learning algorithms to quantify
E - ISSN: 3051-3456 SOC changes in agricultural croplands under varying climatic conditions. We
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Published: 20-03-2023 RMSE = 2.58 g kg ') and SVM (R® = 0.69, RMSE = 2.91 g kg!). Spectral vegetation
Page No: 27-31 indices, particularly the Normalized Difference Vegetation Index (NDVI) and Soil

Adjusted Vegetation Index (SAVI), showed strong correlations with SOC content (r >
0.65). Climate variables including temperature and precipitation patterns significantly
influenced SOC dynamics, with temperature showing negative correlations (-0.58) and
precipitation showing positive correlations (0.43) with SOC accumulation. The
integrated approach successfully mapped SOC changes at 30-meter spatial resolution,
revealing annual SOC loss rates ranging from 0.2-0.8% across different land
management practices. These findings provide valuable insights for precision
agriculture applications and carbon sequestration monitoring in agricultural
landscapes.
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Introduction

Soil organic carbon constitutes the largest terrestrial carbon pool, containing approximately 1,500 Pg of carbon globally, which
represents nearly three times the atmospheric carbon pool . Agricultural soils play a crucial role in global carbon cycling, with
croplands covering approximately 12% of the Earth's land surface and serving as both sources and sinks of atmospheric carbon
dioxide . The dynamics of SOC in agricultural systems are inherently complex, influenced by multiple interacting factors
including climate conditions, soil properties, vegetation cover, and management practices [,

Climate change poses significant challenges to agricultural sustainability, with rising temperatures, altered precipitation patterns,
and increased frequency of extreme weather events directly impacting soil carbon dynamics (. Understanding SOC changes
under climate variability is essential for developing effective climate adaptation and mitigation strategies in agricultural systems
B, Traditional field-based methods for SOC assessment, while accurate, are time-consuming, expensive, and limited in spatial
coverage, making them inadequate for large-scale monitoring programs [,

Remote sensing technology offers unprecedented opportunities for spatially explicit monitoring of soil properties across multiple
scales and time periods "), Satellite-based sensors provide consistent, repeatable observations that can capture temporal
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variations in vegetation cover, soil moisture, and other
parameters related to carbon cycling processes Bl The
integration of remote sensing data with machine learning
algorithms has emerged as a powerful approach for predictive
modeling of soil properties, offering improved accuracy and
computational efficiency compared to traditional statistical
methods 1.

Recent advances in machine learning techniques, including
ensemble methods, deep learning, and hybrid algorithms,
have shown remarkable success in environmental modeling
applications %, These methods can effectively handle non-
linear relationships, high-dimensional datasets, and complex
interactions between predictor variables, making them
particularly suitable for SOC estimation [*1, The combination
of multi-spectral satellite imagery with climate data provides
a comprehensive framework for understanding SOC
dynamics under changing environmental conditions 2,

The objective of this study is to develop and validate an
integrated remote sensing and machine learning framework
for estimating SOC changes in croplands under climate
variability. Specific aims include: (1) evaluating the
performance of different machine learning algorithms for
SOC prediction; (2) identifying key spectral and climatic
variables influencing SOC dynamics; (3) quantifying spatial
and temporal patterns of SOC changes across diverse
agricultural landscapes; and (4) assessing the impact of
climate variability on SOC accumulation and loss rates.

Materials and Methods

Study Area

The study was conducted across three distinct agro-climatic
zones representing diverse environmental conditions and
cropping systems. Zone A encompasses temperate
continental climate conditions (45°N-47°N, 95°W-98°W)
with corn-soybean rotation systems. Zone B represents semi-
arid Mediterranean climate (38°N-40°N, 120°W-122°W)
dominated by wheat and barley cultivation. Zone C covers
humid subtropical conditions (32°N-34°N, 83°W-85°W)
with cotton and peanut production systems. Each zone covers
approximately 10,000 km2 with varying topography, soil
types, and management practices.

Field Data Collection

Soil samples were collected from 450 georeferenced
sampling sites (150 sites per zone) using stratified random
sampling approach. Sampling was conducted annually during
post-harvest periods (October-November) from 2018 to
2022. At each site, composite soil samples were collected
from 0-30 cm depth using a soil auger with five sub-samples
withina 10 m x 10 m plot. SOC content was determined using
the Walkley-Black wet oxidation method with dichromate
digestion, following standard protocols 3. Quality control
measures included duplicate analysis for 10% of samples and
certified reference materials.

Remote Sensing Data
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Multi-temporal satellite imagery was acquired from Landsat
8 OLI and Sentinel-2 MSI sensors for the study period.
Cloud-free images (< 10% cloud cover) were selected for
analysis, resulting in 30-45 images per year for each zone.
Preprocessing included atmospheric correction using the
Dark Object Subtraction method, geometric correction, and
radiometric calibration 1. Spectral vegetation indices were
calculated including NDVI, SAVI, Enhanced Vegetation
Index (EVI), and Normalized Difference Water Index
(NDWI).

Climate Data

Climate variables were obtained from meteorological stations
and gridded datasets including temperature (minimum,
maximum, mean), precipitation, relative humidity, solar
radiation, and evapotranspiration. Monthly climate data were
aggregated to seasonal and annual scales. Climate indices
including Growing Degree Days (GDD), Precipitation
Effectiveness Index (PEl), and Aridity Index (Al) were
calculated to characterize climatic conditions 51,

Machine Learning Algorithms

Three machine learning algorithms were implemented for

SOC prediction:

e Random Forest (RF): An ensemble method combining
multiple decision trees with bootstrap aggregation.
Model parameters included 500 trees, minimum samples
split = 5, and maximum depth = 10 [26],

e Support Vector Machine (SVM): A kernel-based
algorithm using Radial Basis Function (RBF) kernel
with optimized hyperparameters (C = 100, y = 0.01)
determined through grid search cross-validation [,

e Artificial Neural Network (ANN): A multi-layer
perceptron with two hidden layers (64 and 32 neurons),
ReLU activation function, and Adam optimizer with
learning rate = 0.001 [28],

e Model Development and Validation
The dataset was randomly split into training (70%) and
testing (30%) subsets while maintaining spatial and
temporal stratification. Feature selection was performed
using recursive feature elimination with cross-
validation. Model performance was evaluated using
coefficient of determination (R2), root mean square error
(RMSE), mean absolute error (MAE), and bias. Ten-fold
cross-validation was implemented to assess model
robustness and reduce overfitting.

Results

Field SOC Measurements

Field measurements revealed significant spatial and temporal
variability in SOC content across the study zones (Table 1).
Zone A exhibited the highest mean SOC content (24.3+6.8 g
kg™), followed by Zone C (18.7+5.2 g kg') and Zone B
(12.4+4.1 g kg). Temporal analysis indicated declining
SOC trends in all zones, with annual loss rates of 0.31%,
0.64%, and 0.47% for Zones A, B, and C, respectively.

Table 1: Descriptive statistics of soil organic carbon content across study zones

Zone Climate Type Mean SOC (g kg™) SD | Min | Max CV (%)
A Temperate 24.3 6.8 | 11.2 | 421 28.0
B Semi-arid 124 41| 58 | 237 331
C Subtropical 18.7 52| 83 | 314 27.8
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Remote Sensing Analysis

Spectral analysis revealed strong relationships between
vegetation indices and SOC content (Table 2). NDVI
demonstrated the strongest correlation (r = 0.68, p< 0.001),
followed by SAVI (r = 0.65, p< 0.001) and EVI (r =0.62, p<
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0.001). Seasonal variations in spectral responses were
observed, with peak correlations occurring during mid-
growing season (June-July). Multi-temporal analysis
revealed that spring and summer NDVI values were most
predictive of SOC content.

Table 2: Correlation coefficients between spectral indices and SOC content

Spectral Index Zone A Zone B Zone C Overall
NDVI 0.71* 0.63* 0.69* 0.68*
SAVI 0.68* 0.59* 0.67* 0.65*

EVI 0.66* 0.55* 0.64* 0.62*
NDWI 0.52* 0.48* 0.56* 0.52*

*Significant at p < 0.001

Machine Learning Model Performance

Random Forest achieved the best overall performance across
all study zones with R?=0.78, RMSE =2.34 gkg!, and MAE
= 1.87 g kg' (Figure 1). ANN showed comparable

performance (R? = 0.75, RMSE = 2.58 g kg™!) but required
longer computational time. SVM demonstrated lower
accuracy (R? = 0.69, RMSE = 2.91 g kg™) particularly in
heterogeneous landscapes.

Table 3: Machine learning model performance metrics

Algorithm R2 RMSE (g kg™) MAE (g kg™) Bias (g kg™)
Random Forest 0.78 2.34 1.87 0.12
ANN 0.75 2.58 2.03 -0.08
SVM 0.69 2.91 2.41 0.34

Feature importance analysis revealed that NDVI, mean

influential predictors, contributing 23%, 18%, and 15%
respectively to model performance.

RMSE = 2,58kg™

R?=0.75

R? = 0.69
RMSE = 2,914’

annual temperature, and precipitation were the most
081 R2=078
RMSE = 2.34 kg
= -1
0,6- MAE = 1,87 g
0,4-
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0,21
0,1
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Random Forest
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Fig 1: Performance Of Machine Learning Models Across All Study Zone.

Climate Impact Assessment

Climate variables significantly influenced SOC dynamics
across all study zones. Mean annual temperature showed
negative correlations with SOC content (r =-0.58, p < 0.001),
while precipitation exhibited positive relationships (r = 0.43,
p < 0.001). Extreme temperature events (> 35°C for > 5
consecutive  days) resulted in accelerated SOC
decomposition, with losses of 2-4% observed in affected
areas. Drought conditions (precipitation < 50% of long-term
average) led to reduced plant productivity and lower SOC
inputs.

Spatial and Temporal SOC Mapping

The optimized RF model was applied to generate annual SOC
maps at 30-meter resolution for the entire study period.
Spatial analysis revealed distinct patterns of SOC distribution
related to topography, land use, and management practices
(Figure 2). Higher SOC concentrations were observed in
valleys and lower slope positions, while ridges and steep
slopes showed lower values. Conservation tillage practices
resulted in 15-25% higher SOC content compared to
conventional tillage systems.

Temporal analysis indicated declining SOC trends in 78% of
the study area, with the most significant losses occurring in
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semi-arid regions. Areas under intensive cultivation showed
annual SOC loss rates of 0.5-0.8%, while grassland
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conversions and conservation practices demonstrated SOC
gains of 0.2-0.4% annually.

N
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Fig 2: Annual SOC Concentrations At 30-Meter Resolution

Discussion

The integration of remote sensing data with machine learning
algorithms demonstrated significant potential for accurate
SOC estimation across diverse agricultural landscapes. The
superior performance of the Random Forest algorithm aligns
with previous studies highlighting its effectiveness in
handling non-linear relationships and high-dimensional
environmental datasets %, The ensemble nature of RF
provides robustness against overfitting and improved
generalization capabilities compared to individual tree-based
models 291,

The strong correlation between vegetation indices and SOC
content reflects the fundamental relationship between plant
productivity and soil carbon inputs 1. NDVI emerged as the
most predictive spectral variable, consistent with its
established role as an indicator of biomass production and
photosynthetic activity 22, The seasonal variation in spectral-
SOC relationships emphasizes the importance of multi-
temporal analysis for capturing dynamic processes in
agricultural systems [231,

Climate variables significantly influenced SOC dynamics,
with temperature acting as a primary driver of decomposition
processes and precipitation affecting plant productivity and
carbon inputs 4. The negative correlation between
temperature and SOC content supports the temperature-
decomposition hypothesis, where higher temperatures
accelerate microbial activity and organic matter breakdown
251, The positive relationship between precipitation and SOC
reflects increased plant productivity and reduced
decomposition rates under adequate moisture conditions [?61,
The observed spatial patterns of SOC distribution align with
topographic and hydrological controls on soil development
and carbon accumulation 71, Lower landscape positions
typically receive additional water and sediment inputs,
creating favorable conditions for SOC accumulation 28, The

influence of management practices on SOC content
demonstrates the potential for agricultural interventions to
enhance carbon sequestration [,

The declining SOC trends observed across study zones raise
concerns about long-term soil health and agricultural
sustainability %1, The higher loss rates in semi-arid regions
reflect the vulnerability of these systems to climate change
impacts and the need for adaptive management strategies.
Conservation practices including cover cropping, reduced
tillage, and integrated nutrient management show promise for
reversing SOC decline trends.

Conclusion

This study successfully demonstrated the effectiveness of

integrating remote sensing data with machine learning

algorithms for estimating SOC changes in agricultural
croplands under climate variability. The Random Forest
algorithm achieved the highest accuracy (R? = 0.78) among

tested methods, providing reliable SOC predictions at 30-

meter spatial resolution. Key findings include:

1. Strong relationships exist between vegetation indices
(particularly NDVI) and SOC content, enabling remote
estimation of soil carbon stocks.

2. Climate variables, especially temperature and
precipitation, significantly influence SOC dynamics,
with temperature showing negative effects and
precipitation showing positive effects on carbon
accumulation.

3. Spatial analysis revealed distinct patterns of SOC
distribution related to topography and management
practices, with conservation systems showing higher
carbon retention.

4. Temporal analysis indicated declining SOC trends across
78% of the study area, with annual loss rates of 0.2-0.8%
depending on climate zone and management practices.
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5.

The developed framework provides valuable tools for
precision agriculture applications, carbon accounting
programs, and climate change mitigation strategies.
Future research should focus on incorporating additional
remote sensing products, exploring deep learning
approaches, and extending the analysis to larger spatial
and temporal scales. The integration of soil process
models with machine learning algorithms offers
promising directions for improving prediction accuracy
and understanding mechanistic relationships.
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