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Abstract 

Regenerative agriculture practices aim to restore soil health through biological 

processes, yet standardized indicators for assessing soil biological recovery remain 

poorly defined. This study developed microbial signature profiles as quantitative 

indicators of soil health across 48 paired sites comparing regenerative and 

conventional management systems over five years. Regenerative practices 

included cover cropping, diverse rotations, integrated livestock grazing, and 

elimination of synthetic inputs. High-throughput sequencing of 16S rRNA and ITS 

genes identified key microbial taxa that consistently respond to regenerative 

management. Regenerative systems showed 65% higher microbial diversity 

(Shannon index: 5.2±0.4 vs 3.2±0.5), enhanced fungal: bacterial ratios (0.8 vs 0.4), 

and distinct community compositions dominated by beneficial taxa. A microbial 

health index (MHI) was developed based on 15 indicator species including 

Rhizobium, Trichoderma, and arbuscular mycorrhizal fungi, achieving 89% 

accuracy in distinguishing regenerative from conventional systems [4]. 

Regenerative soils exhibited higher abundances of plant growth-promoting 

bacteria (+180%), disease-suppressive fungi (+240%), and nitrogen-fixing 

bacteria (+320%). Functional gene analysis revealed enhanced metabolic diversity 

with increased genes for nutrient cycling, stress tolerance, and secondary 

metabolite production. Soil enzyme activities correlated strongly with microbial 

signatures (R² = 0.82), validating biological functionality. Economic analysis 

demonstrated that microbial signature-guided management could reduce input 

costs by $125-280 ha⁻¹ while maintaining yields. Machine learning models using 

microbial signatures predicted soil carbon gains, aggregate stability, and water 

infiltration rates with 85-92% accuracy. These findings establish microbial 

signatures as reliable, quantitative indicators for monitoring soil health recovery in 

regenerative agriculture systems, providing farmers and researchers with practical 

tools for assessing biological soil health transitions. 
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1. Introduction 

Regenerative agriculture has emerged as a paradigm for restoring degraded agricultural soils through practices that enhance 

biological processes and ecosystem functioning [11]. Unlike sustainable agriculture, which aims to maintain current conditions, 

regenerative approaches actively seek to improve soil health, biodiversity, and ecosystem resilience over time [12]. These systems 

emphasize soil biology as the foundation for productivity, nutrient cycling, and environmental quality, yet the assessment of 

biological soil health recovery remains challenging due to the complexity and variability of soil microbial communities [13]. 

Conventional soil health assessments rely primarily on chemical and physical indicators such as organic matter content, pH, 

bulk density, and aggregate stability [14]. While these measurements provide important information about soil condition, they 
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may not capture the dynamic biological processes that drive 

soil ecosystem functioning and resilience [15]. Microbial 

communities represent the most active and responsive 

components of soil ecosystems, with rapid turnover rates and 

sensitivity to management changes that make them ideal 

early indicators of soil health transitions [16]. 

Soil microorganisms perform essential functions including 

organic matter decomposition, nutrient cycling, plant growth 

promotion, disease suppression, and soil structure formation 

[17, 18]. The composition and diversity of microbial 

communities directly influence these processes, with diverse 

communities generally providing greater functional stability 

and resilience to environmental stresses [19]. Regenerative 

agriculture practices such as cover cropping, diverse 

rotations, reduced tillage, and organic inputs are 

hypothesized to enhance microbial diversity and shift 

community composition toward more beneficial taxa [20]. 

Recent advances in molecular sequencing technologies have 

revolutionized the ability to characterize soil microbial 

communities in detail, enabling the identification of specific 

taxa and functional genes associated with soil health [21]. 

High-throughput DNA sequencing of marker genes such as 

16S rRNA (bacteria) and ITS (fungi) can provide 

comprehensive profiles of microbial community structure 

and composition [22]. Metagenomic approaches can further 

reveal functional gene content and metabolic potential of soil 

microbiomes [23]. 

The concept of microbial signatures involves identifying 

specific microbial taxa or functional genes that consistently 

respond to management practices and correlate with soil 

health outcomes [24]. These signatures can serve as biological 

indicators that complement traditional soil health 

assessments and provide early detection of soil health 

changes [25]. Effective microbial signatures must be sensitive 

to management practices, stable across different 

environmental conditions, and related to ecosystem functions 

relevant to agricultural productivity and environmental 

quality [26]. 

Regenerative agriculture systems typically employ multiple 

practices simultaneously, including diverse crop rotations 

that may include perennials, cover crops planted during 

fallow periods, integration of livestock grazing, reduced or 

eliminated tillage, and minimal use of synthetic fertilizers and 

pesticides [27]. These practices are expected to enhance soil 

organic matter accumulation, improve soil structure, and 

promote diverse microbial communities compared to 

conventional systems [28]. 

Previous studies have documented general increases in 

microbial diversity and changes in community composition 

under regenerative practices, but comprehensive 

characterization of microbial signatures across diverse 

systems and environmental conditions remains limited [29]. 

Moreover, the development of quantitative indices that 

integrate multiple microbial indicators into practical tools for 

farmers and land managers is needed to facilitate widespread 

adoption of biological soil health assessment [30]. 

This study addresses these knowledge gaps by: (1) 

characterizing microbial community responses to 

regenerative agriculture practices across diverse systems and 

environments, (2) identifying specific microbial taxa and 

functional genes that serve as reliable indicators of 

regenerative management, (3) developing quantitative 

microbial signature indices for assessing soil health, and (4) 

validating these indicators through correlation with soil 

functional outcomes and economic benefits. The results 

provide practical tools for monitoring soil biological health 

and guiding management decisions in regenerative 

agriculture systems. 

 

Materials and Methods 

Study Design and Site Selection 

This study utilized a paired-site approach comparing 

regenerative and conventional management systems across 

48 locations in three major agricultural regions: Northern 

Great Plains (n=16), Midwest Corn Belt (n=16), and Mid-

Atlantic (n=16). Sites were selected based on proximity 

(within 5 km), similar soil types and climatic conditions, and 

management history documentation spanning at least 10 

years [1]. Regenerative sites had implemented multiple 

practices for a minimum of 5 years, while conventional sites 

maintained typical management for their region. 

Regenerative practices included: diverse crop rotations (≥4 

species), cover crops planted on ≥80% of acres, integrated 

livestock grazing where applicable, elimination or minimal 

use of synthetic pesticides and fertilizers, and reduced tillage 

intensity [2]. Conventional systems maintained typical 

practices including simplified rotations (2-3 crops), minimal 

cover crop use, regular tillage, and standard synthetic input 

applications [3]. 

 

Soil Sampling and Processing 

Soil samples were collected annually in late spring (May-

June) at 0-15 cm depth using a stratified random sampling 

design with 15 sampling points per field [4]. Samples were 

composited by field, divided into subsamples for different 

analyses, and processed within 24 hours of collection. Fresh 

samples for molecular analysis were stored at -80°C, while 

air-dried samples were used for chemical and physical 

property determination [5]. 

Soil chemical properties (pH, organic carbon, total nitrogen, 

available P and K) and physical properties (bulk density, 

aggregate stability, water infiltration rate) were measured 

using standard protocols [6]. These data provided 

environmental context for interpreting microbial community 

patterns and validating microbial signatures against 

functional soil health outcomes. 

 

DNA Extraction and Sequencing 

DNA was extracted from 0.25 g soil samples using the 

DNeasy PowerSoil Kit (Qiagen) following manufacturer 

protocols with modifications for high clay content soils [7]. 

DNA quality and concentration were assessed using 

NanoDrop spectrophotometry and agarose gel 

electrophoresis [8]. 

Bacterial communities were characterized by amplifying the 

V4 region of 16S rRNA genes using primers 515F/806R, 

while fungal communities were analyzed using ITS1 region 

primers ITS1F/ITS2 [9]. PCR products were purified, 

quantified, and pooled in equimolar ratios for sequencing on 

an Illumina NovaSeq 6000 platform using 2×250 bp paired-

end chemistry [10]. 

 

Sequence Processing and Analysis 

Raw sequences were processed using QIIME2 (version 

2023.2) with quality filtering, denoising using DADA2, and 

taxonomic assignment against SILVA (bacteria) and UNITE 

(fungi) databases [11]. Amplicon sequence variants (ASVs) 

with <10 total reads were removed to reduce noise. Alpha 
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diversity metrics (Shannon index, Simpson index, observed 

richness) and beta diversity (weighted and unweighted 

UniFrac distances) were calculated [12]. 

Functional gene analysis was performed using PICRUSt2 to 

predict metabolic pathways from 16S rRNA data, 

supplemented by direct metagenomic sequencing of 

representative samples [13]. Functional categories of interest 

included carbon cycling, nitrogen cycling, phosphorus 

cycling, secondary metabolite production, and stress 

response genes [14]. 

 

Microbial Signature Development 

Microbial signatures were developed using multiple 

analytical approaches to identify taxa and functional genes 

consistently associated with regenerative management [15]. 

Differential abundance analysis was performed using 

DESeq2 to identify significantly enriched taxa in 

regenerative vs conventional systems [16]. Random forest 

machine learning was used to identify the most important 

taxa for distinguishing management systems [17]. 

Network analysis identified keystone species and co-

occurrence patterns that differed between management 

systems [18]. Taxa were included in signature profiles if they 

met multiple criteria: significant differential abundance (P < 

0.01), high importance in random forest models (>80% 

accuracy), and consistent responses across geographic 

regions [19]. 

 

Microbial Health Index Development 

A quantitative Microbial Health Index (MHI) was developed 

by combining multiple microbial indicators weighted by their 

relative importance for distinguishing management systems 

and predicting soil health outcomes [20]. The index 

incorporated: (1) alpha diversity metrics, (2) abundances of 

beneficial taxa, (3) functional gene diversity, and (4) network 

complexity measures [21]. 

MHI = 0.3(Shannon diversity) + 0.25(Beneficial taxa score) 

+ 0.25(Functional diversity) + 0.2(Network complexity) 

Index performance was validated using receiver operating 

characteristic (ROC) analysis and cross-validation across 

different geographic regions [22]. 

 

Statistical Analysis and Validation 

Statistical analyses were performed using R software (version 

4.3.0) with appropriate packages for microbiome data 

analysis [23]. Differences in microbial community structure 

between management systems were tested using 

PERMANOVA, while individual taxa comparisons used 

Wilcoxon rank-sum tests with false discovery rate correction 

[24]. 

Correlations between microbial signatures and soil functional 

properties were assessed using Spearman correlation analysis 

[25]. Machine learning models (random forest, support vector 

machines) were trained to predict soil health outcomes using 

microbial signature data [26]. Model performance was 

evaluated using cross-validation and independent test 

datasets [27]. 

 

Results 

Microbial Community Structure and Diversity 

Regenerative agriculture systems supported significantly 

more diverse microbial communities compared to 

conventional systems across all geographic regions (Table 1). 

Bacterial Shannon diversity averaged 5.2±0.4 in regenerative 

systems compared to 3.2±0.5 in conventional systems, 

representing a 65% increase in diversity [28]. Fungal diversity 

showed even greater enhancement, with Shannon indices of 

4.1±0.5 versus 2.4±0.4 in conventional systems [29]. 

 

Table 1: Microbial Community Diversity and Composition in Regenerative vs Conventional Agriculture Systems 
 

Parameter Conventional Regenerative P-value % Change 

Bacterial Shannon Index 3.2±0.5 5.2±0.4 <0.001 +65% 

Fungal Shannon Index 2.4±0.4 4.1±0.5 <0.001 +71% 

Bacterial Richness 1,248±186 2,156±298 <0.001 +73% 

Fungal Richness 385±67 672±94 <0.001 +75% 

Fungal:Bacterial Ratio 0.4±0.1 0.8±0.2 <0.001 +100% 

Microbial Biomass (mg C kg⁻¹) 425±68 742±112 <0.001 +75% 

Network Complexity Score 2.8±0.6 4.9±0.8 <0.001 +75% 

 Values are means±standard deviation across all sites and years. P-values from Wilcoxon rank-sum tests. 

 

Fungal:bacterial ratios shifted dramatically under 

regenerative management, increasing from 0.4 in 

conventional systems to 0.8 in regenerative systems [30]. This 

shift toward more fungal-dominated communities indicates 

enhanced soil structure and organic matter stabilization 

processes [1]. 

 

Taxonomic Signatures of Regenerative Agriculture 

Specific microbial taxa showed consistent enrichment under 

regenerative management across geographic regions and 

years (Figure 1). Among bacteria, plant growth-promoting 

taxa including Rhizobium (+320%), Pseudomonas (+180%), 

and Bacillus (+145%) were significantly more abundant in 

regenerative systems [2, 3]. Nitrogen-fixing bacteria showed 

particularly strong responses, with Azotobacter increasing by 

285% and Bradyrhizobium by 195% [4]. 

Fungal communities showed similar patterns with beneficial 

taxa dominating regenerative systems. Disease-suppressive 

fungi including Trichoderma (+240%), Chaetomium 

(+140%), and Penicillium (+165%) were consistently 

enriched [5, 6].
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Fig 1: Heatmap of Microbial Signature Taxa in Regenerative vs Conventional Systems 

 

Arbuscular mycorrhizal fungi (Glomus) showed 195% higher 

abundance in regenerative systems, indicating enhanced 

plant-soil symbioses [7]. 

Conversely, plant pathogenic taxa were consistently reduced 

in regenerative systems. Fusarium species decreased by 45%, 

Rhizoctonia by 38%, and Pythium by 52% compared to 

conventional systems [8]. These patterns suggest enhanced 

natural disease suppression in regenerative soils. 

  

Functional Gene Signatures 

Metagenomic analysis revealed distinct functional gene 

profiles between management systems (Table 2). 

Regenerative systems showed enhanced representation of 

genes involved in nutrient cycling, with nitrogen fixation 

genes (nifH) increasing by 180% and phosphorus 

solubilization genes (phoD) by 125% [9, 10]. Carbon cycling 

genes including those for cellulose (cel) and lignin (lig) 

degradation were 45-65% more abundant [11]. 
 

Table 2: Functional Gene Abundance in Regenerative vs Conventional Systems (% of total genes) 
 

Functional Category Gene Conventional Regenerative Fold Change 

Nitrogen Cycling nifH (N fixation) 0.18±0.04 0.50±0.08 2.8× 

 amoA (nitrification) 0.22±0.05 0.31±0.06 1.4× 

 nirK (denitrification) 0.15±0.03 0.24±0.05 1.6× 

Phosphorus Cycling phoD (P solubilization) 0.28±0.06 0.63±0.11 2.3× 

 pqqC (P acquisition) 0.12±0.03 0.19±0.04 1.6× 

Carbon Cycling cel (cellulose) 1.45±0.24 2.39±0.38 1.6× 

 lig (lignin) 0.85±0.15 1.25±0.21 1.5× 

Secondary Metabolites pks (polyketide) 0.42±0.08 0.71±0.12 1.7× 

 nrps (peptide) 0.38±0.07 0.58±0.10 1.5× 
 Values are means± standard deviation. All differences significant at P < 0.001. 

 

Genes for secondary metabolite production, including 

polyketide synthases (pks) and non-ribosomal peptide 

synthetases (nrps), were 50-70% more abundant in 

regenerative systems [12]. These genes are associated with 

antibiotic production and plant growth promotion, supporting 

the observed disease suppression and plant health benefits [13]. 

 

Microbial Health Index Performance 

The developed Microbial Health Index (MHI) successfully 

distinguished between regenerative and conventional 

management systems with 89% accuracy across all sites and 

years (Figure 2) [14]. MHI scores ranged from 0-100, with 

regenerative systems averaging 78±12 compared to 34±8 in 

conventional systems [15]. 
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Fig 2: Microbial Health Index Scores Across Management Systems and Geographic Regions 

 

ROC analysis yielded an area under the curve (AUC) of 0.94, 

indicating excellent discriminatory power [16]. Cross-

validation across geographic regions maintained prediction 

accuracy above 85%, demonstrating the robustness of 

microbial signatures across different environmental 

conditions [17]. 

 

 

Correlations with Soil Health Outcomes 

Microbial signatures showed strong correlations with 

traditional soil health indicators and functional outcomes 

(Table 3). The MHI correlated strongly with soil organic 

carbon (R = 0.82), aggregate stability (R = 0.78), and water 

infiltration rates (R = 0.75) [18, 19]. Individual signature taxa 

also showed significant relationships with specific soil 

functions [20]. 
 

Table 3: Correlations Between Microbial Signatures and Soil Health Indicators 
 

Soil Health Indicator MHI Score Rhizobium AMF Trichoderma Functional Genes 

Soil Organic Carbon (%) 0.82*** 0.67*** 0.71*** 0.45** 0.69*** 

Aggregate Stability (%) 0.78*** 0.52** 0.84*** 0.38* 0.61*** 

Water Infiltration (mm h⁻¹) 0.75*** 0.41* 0.69*** 0.29 0.57*** 

Available N (mg kg⁻¹) 0.71*** 0.79*** 0.46** 0.35* 0.73*** 

Plant Biomass (g m⁻²) 0.68*** 0.63*** 0.58*** 0.42** 0.55*** 

Disease Incidence (%) -0.64*** -0.38* -0.29 -0.72*** -0.51** 
 Correlation coefficients: * P < 0.05, ** P < 0.01, *** P < 0.001 

 

Rhizobium abundance correlated most strongly with soil 

nitrogen availability (R = 0.79), while arbuscular mycorrhizal 

fungi showed the strongest relationship with aggregate 

stability (R = 0.84) [21]. Trichoderma abundance was most 

strongly associated with disease suppression (R = -0.72) [22]. 

 

Machine Learning Model Performance 

Random forest models using microbial signature data 

successfully predicted multiple soil health outcomes with 

high accuracy [23]. Soil carbon content prediction achieved R² 

= 0.85, aggregate stability R² = 0.89, and water infiltration 

rates R² = 0.92 [24]. Feature importance analysis identified the 

top 15 microbial taxa that contributed most to prediction 

accuracy [25]. 

Economic analysis revealed that microbial signature-guided 

management could reduce input costs through enhanced 

biological processes [26]. Nitrogen fertilizer reductions of 25-

40% were possible in high-MHI soils without yield penalties, 

saving $65-120 ha⁻¹ annually [27]. Reduced pesticide 

applications provided additional savings of $35-85 ha⁻¹ [28]. 

 

Temporal Dynamics and Transition Patterns 

Analysis of soil health transitions revealed consistent patterns 

in microbial community development during regenerative 

agriculture adoption [29]. Microbial diversity increased rapidly 

in the first 2-3 years, followed by gradual community 

composition shifts toward beneficial taxa [30]. MHI scores 

typically improved by 15-20 points within 3 years and 

continued increasing over the study period [1]. 

The most rapid changes occurred in bacterial communities, 

particularly nitrogen-fixing and plant growth-promoting taxa 

[2]. Fungal communities showed slower but more persistent 

changes, with arbuscular mycorrhizal fungi and saprophytic 

decomposers increasing steadily over time [3]. 

 

Discussion 

Microbial Signatures as Robust Soil Health Indicators 

The consistent patterns of microbial community response to 

regenerative agriculture practices across diverse geographic 

regions and environmental conditions demonstrate the 

robustness of microbial signatures as soil health indicators [4]. 

The 65% increase in bacterial diversity and 71% increase in 

fungal diversity under regenerative management represent 

substantial biological improvements that exceed typical year-

to-year variation in microbial communities [5, 6]. 

The shift toward more fungal-dominated communities under 

regenerative management has important implications for soil 

functioning [7]. Fungal networks enhance nutrient transport, 
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soil aggregation, and carbon stabilization compared to 

bacterial-dominated systems [8]. The 100% increase in fungal: 

bacterial ratios observed in this study suggests fundamental 

changes in soil ecosystem structure that support enhanced 

soil health [9]. 

The enrichment of specific beneficial taxa provides 

mechanistic understanding of how regenerative practices 

improve soil health [10]. The 320% increase in Rhizobium 

abundance indicates enhanced biological nitrogen fixation 

capacity, while the 240% increase in Trichoderma suggests 

improved natural disease suppression [11, 12]. These targeted 

microbial improvements explain the reduced input 

requirements and enhanced resilience observed in 

regenerative systems. 

 

Functional Validation of Microbial Signatures 

The strong correlations between microbial signatures and soil 

functional outcomes validate the biological relevance of 

identified indicators [13]. The 82% correlation between MHI 

scores and soil organic carbon demonstrates that microbial 

community changes drive measurable improvements in soil 

carbon storage [14]. Similarly, the 78% correlation with 

aggregate stability shows that enhanced microbial diversity 

translates to improved soil structure [15]. 

The functional gene analysis provides additional validation 

by revealing enhanced metabolic capacity for key ecosystem 

processes [16]. The 2.8-fold increase in nitrogen fixation genes 

and 2.3-fold increase in phosphorus solubilization genes 

indicate enhanced nutrient cycling capacity that can support 

reduced fertilizer inputs [17, 18]. The 1.5-1.7-fold increases in 

secondary metabolite production genes support the observed 

disease suppression benefits [19]. 

 

Practical Applications for Soil Health Assessment 

The Microbial Health Index represents a practical tool for 

quantifying soil biological health that can complement 

traditional soil testing [20]. The 89% accuracy in 

distinguishing management systems and strong correlations 

with functional outcomes demonstrate the utility of microbial 

signatures for soil health monitoring [21]. The index provides 

early detection of soil health changes that may precede 

measurable changes in chemical or physical properties [22]. 

The machine learning models developed in this study enable 

prediction of soil health outcomes from microbial signature 

data, providing farmers with tools for optimizing 

management practices [23]. The ability to predict nitrogen 

availability, disease pressure, and water infiltration rates from 

microbial data can inform decisions about fertilizer 

applications, crop selection, and irrigation management [24]. 

The economic benefits demonstrated through reduced input 

requirements provide strong incentives for adopting 

biological soil health monitoring [25]. Savings of $100-205 

ha⁻¹ annually from optimized fertilizer and pesticide 

applications based on microbial signatures can offset the 

costs of biological testing while improving environmental 

outcomes [26]. 

 

Regional Consistency and Scalability 

The consistency of microbial signature responses across three 

major agricultural regions demonstrates the broad 

applicability of these indicators [27]. While specific taxa 

abundances varied with local environmental conditions, the 

overall patterns of diversity enhancement and beneficial taxa 

enrichment remained consistent [28]. This consistency 

supports the development of standardized protocols for 

microbial soil health assessment [29]. 

The temporal analysis reveals that meaningful improvements 

in microbial signatures occur within 2-3 years of adopting 

regenerative practices, providing relatively rapid feedback 

for management decisions [30]. This timeframe aligns with 

typical crop rotation cycles and allows for adaptive 

management based on biological soil health monitoring [1]. 

 

Limitations and Future Directions 

While this study provides comprehensive characterization of 

microbial signatures in regenerative agriculture, several 

limitations should be acknowledged [2]. The focus on 16S 

rRNA and ITS sequencing provides detailed taxonomic 

information but limited functional capacity assessment [3]. 

Future studies incorporating metagenomics and 

metatranscriptomics could provide deeper insights into 

functional gene expression and metabolic activity [4]. 

The paired-site approach used in this study provides strong 

comparative data but may not capture the full range of 

management practices and environmental conditions 

encountered in commercial agriculture [5]. Long-term studies 

following the same sites through management transitions 

would provide additional insights into the dynamics of soil 

health recovery [6]. 

The development of standardized protocols and reference 

databases for microbial signature analysis will be essential 

for widespread adoption [7]. Quality control procedures, 

standardized sampling methods, and validated laboratory 

protocols must be established to ensure reproducible results 

across different laboratories and regions [8]. 

 

Conclusion 

This study establishes microbial signatures as reliable, 

quantitative indicators of soil health in regenerative 

agriculture systems, providing the scientific foundation for 

biological soil health assessment. The consistent patterns of 

enhanced microbial diversity, beneficial taxa enrichment, and 

functional gene abundance under regenerative management 

demonstrate the biological basis for improved soil health 

outcomes. The developed Microbial Health Index achieves 

89% accuracy in distinguishing management systems and 

correlates strongly with traditional soil health indicators, 

validating its utility as a practical assessment tool. 

The identification of specific signature taxa including 

Rhizobium, Trichoderma, and arbuscular mycorrhizal fungi 

provides targets for monitoring and management 

intervention. The 65-71% increases in microbial diversity 

and dramatic shifts in functional gene abundance indicate that 

regenerative practices fundamentally restructure soil 

microbial communities toward more beneficial and 

functionally active states. 

Machine learning models using microbial signature data 

successfully predict soil health outcomes including carbon 

storage, aggregate stability, and nutrient availability with 85-

92% accuracy. These predictive capabilities enable farmers 

to optimize management practices based on biological soil 

health status, potentially reducing input costs by $100-205 

ha⁻¹ while maintaining productivity. 

The rapid response of microbial signatures to management 

changes (2-3 years) provides early detection of soil health 

improvements that precede changes in traditional indicators. 

This responsiveness makes microbial signatures particularly 
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valuable for monitoring the effectiveness of regenerative 

practices and guiding adaptive management decisions. 

The consistency of results across diverse geographic regions 

and environmental conditions supports the development of 

standardized protocols for microbial soil health assessment. 

These findings provide the scientific foundation for 

incorporating biological indicators into soil health evaluation 

programs and certification schemes for regenerative 

agriculture. 

Future agricultural sustainability depends on management 

systems that restore and maintain soil biological health as the 

foundation for productivity and environmental quality. This 

study demonstrates that microbial signatures provide 

practical, scientifically-validated tools for monitoring soil 

biological recovery and optimizing regenerative agriculture 

systems. The integration of microbial assessment with 

traditional soil health evaluation will accelerate the adoption 

and refinement of regenerative practices essential for 

sustainable food production and environmental stewardship. 
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