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Soil microbial communities exhibit complex interaction patterns that are significantly

influenced by environmental factors, particularly soil pH and organic matter

P-1SSN: 3051-34438 composition. This study investigated the co-occurrence networks of soil microbes
E-ISSN: 3051-3456 across different pH gradients and organic matter fractions to understand microbial
Volume: 04 community assembly and ecological interactions. We analyzed 120 soil samples from

agricultural and forest ecosystems using 16S rRNA and ITS gene sequencing, coupled
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with comprehensive soil chemical analyses. Network analysis revealed distinct
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PUbIIShe_d' 03-08-2023 microbial network topology. Bacterial networks demonstrated greater stability across
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community structure. The study identified 23 keystone taxa that maintained network
stability across environmental gradients. These findings provide crucial insights into
soil microbial ecology and have implications for sustainable soil management
practices in agricultural systems.
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Introduction

Soil microbial communities represent one of the most diverse and complex ecosystems on Earth, harboring an estimated 10"9"
bacterial cells per gram of soil [ 21, These communities play fundamental roles in biogeochemical cycling, plant health, and
ecosystem functioning through intricate networks of ecological interactions [* 4. Understanding the patterns and drivers of
microbial co-occurrence has become increasingly important for predicting ecosystem responses to environmental changes and
developing sustainable land management strategies [ €,

Co-occurrence networks provide a powerful framework for analyzing microbial community structure and inferring potential
ecological interactions [ 8. These networks are constructed based on statistical correlations between microbial taxa across
environmental gradients, revealing patterns of species associations that may reflect ecological processes such as competition,
cooperation, or shared environmental preferences [ 1%, Network topology metrics, including modularity, centrality, and
clustering coefficients, offer insights into community stability, resilience, and functional organization (%12,

Soil pH represents one of the most influential environmental factors shaping microbial community composition and diversity 13
141, Previous studies have demonstrated that bacterial diversity typically peaks at neutral pH, while fungal communities often
show greater tolerance to acidic conditions [*> 161, However, the impact of pH on microbial co-occurrence patterns and network
structure remains poorly understood, particularly across different ecosystem types and management regimes 17181,

Organic matter fractions in soil provide the primary energy and carbon sources for microbial communities, influencing both
community composition and metabolic activity [1% 20,
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Different organic matter pools, including dissolved organic
carbon (DOC), particulate organic matter (POM), and
mineral-associated organic matter (MAOM), exhibit distinct
chemical properties and bioavailability, potentially leading to
specialized microbial associations and niche differentiation
21,221 The objectives of this study were to: (1) characterize
co-occurrence networks of soil bacteria and fungi across pH
gradients in agricultural and forest systems, (2) evaluate the
influence of organic matter fractions on network topology
and microbial interactions, and (3) identify keystone taxa that
maintain network stability across environmental conditions.

Materials and Methods

Study Sites and Sampling Design

Soil samples were collected from 120 locations across three
distinct ecosystems in the temperate region: agricultural
fields (n=40), deciduous forests (n=40), and mixed
grasslands (n=40). Sampling sites were selected to represent
a broad pH gradient (4.2-8.7) and varying organic matter
content. At each location, five soil cores (0-15 cm depth)
were collected within a 10 m2 area and composited to form a
representative sample. Samples were stored at 4°C during
transport and processed within 48 hours of collection.

Soil Chemical Analysis

Soil pH was measured in 1:2.5 soil water suspension using a
calibrated pH meter 231, Total organic carbon (TOC) was
determined by dry combustion using a CHN analyzer.
Organic matter fractions were separated using established
protocols [4: dissolved organic carbon (DOC) was extracted
with 0.5 M K>SO. solution, particulate organic matter (POM)
was isolated by density fractionation (>53 um), and mineral-
associated organic matter (MAOM) was calculated as the
difference between TOC and POM. Additional soil properties
including available nitrogen, phosphorus, and major cations
were analyzed using standard methods [2°,
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DNA Extraction and Sequencing

Total genomic DNA was extracted from 0.5 g soil using the
Power Soil DNA Isolation Kit (Qiagen) following
manufacturer's protocols. Bacterial 16S rRNA genes were
amplified using primers 515F/806R targeting the V4 region,
while fungal ITS1 region was amplified using primers
ITS1IF/NITS2 12627, PCR products were purified, indexed, and
pooled for paired-end sequencing (2x250 bp) on an llumina
MiSeq platform.

Bioinformatics and Statistical Analysis

Raw sequences were processed using QIIME2 pipeline 28],
Quality filtering, denoising, and chimera removal were
performed using DADA2. Taxonomic assignment was
conducted against SILVA database (v138) for bacteria and
UNITE database (v8.3) for fungi. Operational taxonomic
units (OTUs) with <0.01% relative abundance across all
samples were removed to reduce noise.

Co-occurrence networks were constructed separately for
bacterial and fungal communities using SparCC algorithm to
account for compositional data characteristics ?°1. Networks
were built for different pH categories: acidic (pH <6.0),
neutral (pH 6.0-7.5), and alkaline (pH >7.5). Only
correlations with |r| >0.6 and P <0.01 (FDR-corrected) were
retained. Network visualization and topology analysis were
performed using Gephi and | graph packages.

Results

Soil Characteristics and Microbial Diversity

Soil samples exhibited substantial heterogeneity in chemical
properties across the study sites (Table 1). pH values ranged
from 4.2 to 8.7, with agricultural soils showing the broadest
pH range (4.8-8.3). Total organic carbon content varied from
12.3 to 67.8 g kg, with forest soils generally containing
higher organic matter levels.

Table 1: Soil characteristics across ecosystem types

Parameter Agricultural (n=40) Forest (n=40) Grassland (n=40) Overall Range
pH 6.8+1.2 5.4+0.9 6.2+1.1 4.2-8.7
TOC (gkg™ 28.4+12.6 45.7+15.3 33.2+11.8 12.3-67.8
DOC (mg kg™ 67.3£28.4 98.6+35.7 74.2426.9 23.5-156.7
POM (g kg™) 8.2+#4.1 15.6+6.8 11.3+4.9 2.1-28.4
MAOM (gkg™) 20.249.7 30.1+12.4 21.9+8.6 8.7-52.3

DOC concentrations ranged from 23.5 to 156.7 mg kg,
representing 2.1-4.8% of total organic carbon.

A total of 3,847 bacterial OTUs and 1,923 fungal OTUs were
identified across all samples. Bacterial communities were
dominated by Acidobacteria (18.3%), Proteobacteria
(16.7%), and Actinobacteria (14.2%), while fungal
communities were primarily composed of Ascomycota
(52.4%) and Basidiomycota (31.8%). Alpha diversity
showed significant variation across pH gradients, with
bacterial richness peaking at neutral pH (Shannon diversity:

7.2+0.4) and declining in both acidic (6.1+0.6) and alkaline
conditions (5.8+0.5).

Network Topology Across pH Gradients

Co-occurrence networks exhibited distinct topological
properties across pH categories (Table 2). Acidic soils
displayed the most complex networks with higher node
connectivity and modularity compared to neutral and alkaline
conditions. Bacterial networks consistently showed greater
stability across pH gradients than fungal networks.
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Table 2: Network topology metrics across pH categories
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Network Property | AcidicpH | NeutralpH |  Alkaline pH
Bacterial Networks
Nodes 487 523 391
Edges 1,243 1,089 678
Average degree 5.1 4.2 3.5
Modularity 0.67 0.58 0.52
Clustering coefficient 0.43 0.38 0.31
Fungal Networks
Nodes 298 267 201
Edges 562 423 287
Average degree 3.8 3.2 2.9
Modularity 0.71 0.63 0.59
Clustering coefficient 0.39 0.34 0.28

Influence of Organic Matter Fractions

Organic matter fractions showed differential effects on
network structure and microbial associations. DOC
concentration emerged as the strongest predictor of network
complexity (r = 0.72, P < 0.001), followed by POM content
(r=10.58, P <0.01). Networks in soils with high DOC content
exhibited increased modularity and stronger positive
correlations between taxa (Figure 2).

Specific microbial taxa showed preferential associations with
different organic matter pools. Copiotrophic bacteria,
including members of  Betaproteobacteria  and
Gammaproteobacteria, were strongly correlated with DOC
availability. Conversely, oligotrophic taxa such as
Acidobacteria showed stronger associations with MAOM

fractions, suggesting specialized metabolic strategies for
accessing recalcitrant organic compounds.

Keystone Taxa Identification

Network analysis identified 23 keystone taxa that maintained
high centrality values across different pH conditions and
organic matter gradients (Table 3). These keystone species
included representatives from major bacterial phyla
(Proteobacteria, Acidobacteria, Actinobacteria) and fungal
groups (Ascomycota, Basidiomycota). Notably, several
keystone bacteria belonged to genera known for their
versatile metabolic capabilities, including Pseudomonas,
Streptomyces, and Rhizobium.

Table 3: Selected keystone taxa and their network properties

Taxon Phylum Betweenness Centrality Degree pH Range
Pseudomonas sp. Proteobacteria 0.087 23 4.5-8.2
Streptomyces sp. Actinobacteria 0.076 19 5.1-8.0

Acidobacteria GP1 Acidobacteria 0.069 17 4.2-78
Mortierella sp. Mortierellomycota 0.063 15 4.8-75
Rhizobium sp. Proteobacteria 0.058 14 5.5-8.3

Discussion

This study provides comprehensive insights into the complex
relationships between soil pH, organic matter fractions, and
microbial co-occurrence networks. The observed increase in
network complexity under acidic conditions contrasts with
traditional views of pH effects on microbial diversity,
suggesting that while species richness may decline in acidic
soils, the remaining taxa form more intricate interaction
networks.

The differential response of bacterial and fungal networks to
pH gradients reflects fundamental differences in their
ecological strategies and stress tolerance mechanisms. Fungi
generally exhibit greater tolerance to acidic conditions due to
their ability to actively regulate intracellular pH and secrete
organic acids. This physiological advantage may explain the
maintained network stability observed in fungal communities
across pH gradients. The strong correlation between DOC
concentration and network complexity highlights the
importance of readily available carbon sources in supporting
diverse microbial interactions. High DOC environments may
promote cooperative relationships among microorganisms
through cross-feeding and metabolic complementarity. The
preferential association of copiotrophic bacteria with DOC
pools aligns with their fast-growth strategies and high
resource requirements.

The identification of keystone taxa provides valuable insights
for ecosystem management and restoration efforts. These
taxa likely play critical roles in maintaining community
stability and ecosystem functioning through their central
positions in interaction networks. The prevalence of
metabolically versatile genera among keystone species
suggests that functional diversity, rather than taxonomic
diversity alone, may be key to network stability.

Conclusion

This study demonstrates that co-occurrence networks of soil
microbes are significantly influenced by both soil pH and
organic matter fractions, with distinct patterns emerging
across environmental gradients. Acidic soils support more
complex microbial networks despite lower overall diversity,
while organic matter quality, particularly DOC availability,
serves as a major driver of network topology. The
identification of keystone taxa provides a foundation for
developing targeted management strategies to maintain soil
microbial diversity and ecosystem functionality. Future
research should investigate the temporal dynamics of these
networks and their responses to anthropogenic disturbances
to better understand soil ecosystem resilience and stability.
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