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Accurate soil property mapping is crucial for precision agriculture, environmental
monitoring, and sustainable land management. This study presents an innovative
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Issue: 02 elevation models (DEM) with machine learning algorithms including Random Forest
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resolution soil mapping, supporting precision agriculture applications and sustainable
land management decisions.
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Introduction

Soil properties exhibit significant spatial variability that directly impacts agricultural productivity, environmental quality, and
ecosystem services M. Traditional soil sampling methods, while accurate, are labor-intensive, time-consuming, and economically
unfeasible for large-scale mapping applications [, The emergence of remote sensing technologies combined with artificial
intelligence offers unprecedented opportunities for continuous, high-resolution soil property monitoring across extensive
geographical areas %I,

Remote sensing provides synoptic coverage and temporal repeatability essential for capturing soil variability patterns.
Multispectral sensors capture spectral reflectance signatures correlating with soil composition, while SAR systems penetrate
vegetation canopy and provide information about soil structure and moisture 1. The integration of these data sources with
topographic information from DEMs enables comprehensive characterization of soil-landscape relationships [,

Recent advances in machine learning, particularly deep learning architectures, have revolutionized predictive modeling
capabilities. Convolutional Neural Networks (CNNSs) excel at extracting spatial features from imagery, while ensemble methods
combine multiple algorithms to improve prediction robustness 1. However, challenges remain in handling high-dimensional
remote sensing data, addressing spatial autocorrelation, and ensuring model transferability across different landscapes ["1.

This study addresses these challenges by developing an integrated Al framework that: (1) combines multi-source remote sensing
data for comprehensive soil characterization, (2) implements advanced feature engineering techniques to extract relevant
predictors, (3) employs ensemble deep learning models for robust predictions, and (4) validates results through extensive ground-
truth sampling. The objective is to demonstrate the feasibility of operational high-resolution soil mapping supporting precision
agriculture and environmental management applications.
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Materials and Methods
Study Area and Data Collection
The study encompassed 500 km? of agricultural land in the

Midwest United States, characterized by diverse soil types,

topographic conditions, and land use patterns. Ground truth

data comprised 850 georeferenced soil samples collected

using stratified random sampling during the 2023 growing

season. Laboratory analyses determined SOC (Walkley-

Black method), clay content (hydrometer method), pH (1:1

soil-water suspension), and volumetric moisture content

(gravimetric method) &,

Remote sensing data included:

e Sentinel-2 Level-2A imagery: Cloud-free scenes from
April-October 2023 (10-20m resolution)

e Sentinel-1 SAR data: VV and VH polarization
backscatter coefficients (10m resolution)

e SRTM DEM: 30m resolution elevation data and derived
terrain attributes

e Landsat-8 thermal bands: Surface temperature
estimation (100m resolution, resampled to 30m)

Preprocessing and Feature Engineering

Image preprocessing involved atmospheric correction using

Sen2Cor for Sentinel-2 data, terrain correction for SAR

imagery, and co-registration of all datasets to a common 10m

grid. Spectral indices calculated included NDVI, SAVI, BSI,

and CI P, Terrain attributes derived from DEM encompassed

slope, aspect, TWI, and curvature parameters.

Feature engineering incorporated:

e Spectral features: Band
indices, soil indices

e Textural features: GLCM-derived metrics (contrast,
homogeneity, entropy)

e Temporal features:

reflectances, vegetation

Multi-date statistics (mean,
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variance, phenological metrics)
e Spatial features: Focal statistics within 3x3, 5x5, and
7x7 kernels

Machine Learning Models

Three primary algorithms were implemented:

1. Random Forest (RF): 500 trees with maximum depth
of 20, minimum samples split of 5

2. Support Vector Machine (SVM): RBF kernel with
grid-searched hyperparameters

3. Deep Learning Ensemble: CNN architecture with
residual connections, followed by fully connected layers

The CNN architecture consisted of:

e Input layer: 64x64 pixel patches with 45 channels

e Convolutional blocks: 3 blocks with 64, 128, and 256
filters

¢ Residual connections: Skip connections every 2 layers

e Global average pooling followed by dense layers (512,
256, 128 neurons)

e  Qutput layer: Single neuron for regression

Model Training and Validation

The dataset was split into training (60%), validation (20%),
and test (20%) sets using spatial blocking to minimize
autocorrelation effects [, Hyperparameter optimization
employed Bayesian optimization with 5-fold cross-
validation. Model performance metrics included R2, RMSE,
MAE, and Lin's concordance correlation coefficient.

Results

Model Performance Comparison

Table 1 presents the comparative performance of different
algorithms across soil properties. The deep learning ensemble
consistently outperformed individual algorithms, achieving
the highest R2 values for all predicted properties.

Table 1: Model performance metrics for soil property prediction

Soil Property Model R? RMSE MAE | CCC
SOC (%) RF 0.82 0.41 0.32 0.85
SVM 0.84 0.39 0.30 0.87

DL Ensemble 0.89 0.32 0.24 0.91

Clay (%) RF 0.78 4.21 3.35 0.80
SVM 0.81 3.92 3.11 0.83

DL Ensemble 0.85 3.48 2.76 0.87

pH RF 0.76 0.48 0.38 0.78
SVM 0.79 0.45 0.35 0.81

DL Ensemble 0.83 0.40 0.31 0.85

Moisture (%) RF 0.86 3.12 2.48 0.88
SVM 0.88 2.89 2.30 0.90

DL Ensemble 0.91 2.51 1.99 0.93

Feature Importance Analysis

Feature importance analysis revealed that spectral indices,
particularly BSI and ClI, contributed significantly to SOC and
clay predictions. SAR backscatter coefficients proved crucial

for moisture estimation, while terrain attributes enhanced all
predictions. Figure 1 illustrates the top 15 features for SOC
prediction.
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Fig 1: Feature importance ranking for soil organic carbon prediction

Spatial Distribution Patterns

The generated soil property maps revealed distinct spatial
patterns correlating with landscape position and management
practices. SOC concentrations were highest in topographic
depressions and areas with historical conservation tillage.
Clay content showed strong associations with parent material
and drainage patterns [*4,

Temporal Stability Assessment

Multi-temporal analysis indicated that incorporating imagery
from multiple dates improved prediction accuracy
significantly. Table 2 summarizes the impact of temporal data
integration.

Table 2: Effect of multi-temporal data on prediction accuracy (R2 values)

Soil Property Single Date 3 Dates 5 Dates Full Season
SOC 0.72 0.81 0.86 0.89
Clay 0.69 0.77 0.82 0.85

pH 0.68 0.75 0.80 0.83
Moisture 0.74 0.83 0.88 0.91

Uncertainty Quantification

Prediction uncertainty maps generated using Monte Carlo
dropout revealed higher uncertainty in areas with limited
training samples and complex topography. Average
prediction intervals at 95% confidence level were +0.58% for
SOC, +5.2% for clay, +0.61 for pH, and +3.8% for moisture
content.

Discussion

The superior performance of the deep learning ensemble
demonstrates the value of advanced Al techniques for soil
property prediction. The CNN architecture effectively
captured spatial patterns and nonlinear relationships between
remote sensing features and soil properties 2, The
improvement over traditional machine learning methods (7-
10% higher R?) justifies the additional computational
requirements.

Multi-source  data integration proved critical for
comprehensive soil characterization. Optical imagery
provided information about surface soil properties through
spectral signatures, while SAR data penetrated vegetation
cover and captured subsurface moisture dynamics 3. The
synergy between these data sources, combined with terrain

information, enabled robust predictions across diverse
landscape conditions.

The importance of temporal data integration aligns with
previous findings highlighting seasonal variations in soil
spectral properties 1. Bare soil periods offered optimal
conditions for direct soil observation, while vegetation
dynamics provided indirect indicators of soil fertility and
moisture regimes. The 23% improvement in accuracy with
full-season data emphasizes the value of dense time series
analysis.

Several limitations warrant consideration. First, the models
showed reduced performance in areas with heavy vegetation
cover, suggesting the need for improved vegetation
correction algorithms. Second, the computational demands of
deep learning models may limit operational implementation
for very large areas. Third, model transferability to different
geographical regions requires further validation.

The practical implications of this research extend to precision
agriculture applications, including variable-rate fertilizer
application, irrigation management, and yield prediction.
High-resolution soil maps enable farmers to optimize input
applications, reducing costs and environmental impacts while
maintaining  productivity. Environmental applications
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include carbon sequestration monitoring, erosion risk
assessment, and land degradation evaluation.

Future research directions should focus on: (1) incorporating
hyperspectral imagery for enhanced spectral discrimination,
(2) developing physics-informed neural networks that
integrate pedological knowledge, (3) implementing active
learning strategies for optimal sampling design, and (4)
exploring federated learning approaches for privacy-
preserving model development across multiple farms.

Conclusion
This study successfully demonstrated the potential of Al-
driven approaches for high-resolution soil property
prediction using remote sensing data. The integration of
multi-source satellite imagery with advanced deep learning
techniques achieved prediction accuracies exceeding
traditional methods by significant margins. Key findings
include:

1. Deep learning ensemble models outperformed
conventional machine learning algorithms, achieving R?
values of 0.89 for SOC, 0.85 for clay content, 0.83 for
pH, and 0.91 for moisture prediction.

2. Multi-temporal data integration improved prediction
accuracy by 23%, highlighting the importance of
capturing seasonal variations in  soil-landscape
interactions.

3. The combination of optical, SAR, and topographic data
provided complementary information essential for
comprehensive soil characterization.

4. Feature importance analysis revealed the critical role of
soil-specific  spectral indices, SAR  backscatter
coefficients, and terrain attributes in prediction models.

The developed framework offers a scalable solution for
operational soil mapping, supporting precision agriculture
and environmental management applications. As remote
sensing data availability continues to increase and Al
techniques advance, the potential for accurate, timely, and
cost-effective  soil monitoring will expand further.
Implementation of these technologies can contribute
significantly to sustainable intensification of agriculture and
improved environmental stewardship.
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