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Abstract 
Accurate soil property mapping is crucial for precision agriculture, environmental 
monitoring, and sustainable land management. This study presents an innovative 
approach combining artificial intelligence (AI) techniques with multi-source remote 
sensing data to predict soil properties at high spatial resolution. We integrated 
Sentinel-2 multispectral imagery, Synthetic Aperture Radar (SAR) data, and digital 
elevation models (DEM) with machine learning algorithms including Random Forest 
(RF), Support Vector Machines (SVM), and deep learning models. The methodology 
was tested across 500 km² of agricultural land, targeting key soil properties: organic 
carbon content (SOC), clay content, pH, and moisture levels. Results demonstrated 
that the ensemble deep learning approach achieved R² values of 0.89 for SOC, 0.85 
for clay content, 0.83 for pH, and 0.91 for moisture prediction. The integration of 
multi-temporal remote sensing data improved prediction accuracy by 23% compared 
to single-date imagery. This research provides a scalable framework for high-
resolution soil mapping, supporting precision agriculture applications and sustainable 
land management decisions. 
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Introduction 

Soil properties exhibit significant spatial variability that directly impacts agricultural productivity, environmental quality, and 

ecosystem services [1]. Traditional soil sampling methods, while accurate, are labor-intensive, time-consuming, and economically 

unfeasible for large-scale mapping applications [2]. The emergence of remote sensing technologies combined with artificial 

intelligence offers unprecedented opportunities for continuous, high-resolution soil property monitoring across extensive 

geographical areas [3]. 

Remote sensing provides synoptic coverage and temporal repeatability essential for capturing soil variability patterns. 

Multispectral sensors capture spectral reflectance signatures correlating with soil composition, while SAR systems penetrate 

vegetation canopy and provide information about soil structure and moisture [4]. The integration of these data sources with 

topographic information from DEMs enables comprehensive characterization of soil-landscape relationships [5]. 

Recent advances in machine learning, particularly deep learning architectures, have revolutionized predictive modeling 

capabilities. Convolutional Neural Networks (CNNs) excel at extracting spatial features from imagery, while ensemble methods 

combine multiple algorithms to improve prediction robustness [6]. However, challenges remain in handling high-dimensional 

remote sensing data, addressing spatial autocorrelation, and ensuring model transferability across different landscapes  [7]. 

This study addresses these challenges by developing an integrated AI framework that: (1) combines multi-source remote sensing 

data for comprehensive soil characterization, (2) implements advanced feature engineering techniques to extract relevant 

predictors, (3) employs ensemble deep learning models for robust predictions, and (4) validates results through extensive ground-

truth sampling. The objective is to demonstrate the feasibility of operational high-resolution soil mapping supporting precision 

agriculture and environmental management applications. 
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Materials and Methods 

Study Area and Data Collection 

The study encompassed 500 km² of agricultural land in the 

Midwest United States, characterized by diverse soil types, 

topographic conditions, and land use patterns. Ground truth 

data comprised 850 georeferenced soil samples collected 

using stratified random sampling during the 2023 growing 

season. Laboratory analyses determined SOC (Walkley-

Black method), clay content (hydrometer method), pH (1:1 

soil-water suspension), and volumetric moisture content 

(gravimetric method) [8]. 

Remote sensing data included: 

 Sentinel-2 Level-2A imagery: Cloud-free scenes from 

April-October 2023 (10-20m resolution) 

 Sentinel-1 SAR data: VV and VH polarization 

backscatter coefficients (10m resolution) 

 SRTM DEM: 30m resolution elevation data and derived 

terrain attributes 

 Landsat-8 thermal bands: Surface temperature 

estimation (100m resolution, resampled to 30m) 

 

Preprocessing and Feature Engineering 

Image preprocessing involved atmospheric correction using 

Sen2Cor for Sentinel-2 data, terrain correction for SAR 

imagery, and co-registration of all datasets to a common 10m 

grid. Spectral indices calculated included NDVI, SAVI, BSI, 

and CI [9]. Terrain attributes derived from DEM encompassed 

slope, aspect, TWI, and curvature parameters. 

Feature engineering incorporated: 

 Spectral features: Band reflectances, vegetation 

indices, soil indices 

 Textural features: GLCM-derived metrics (contrast, 

homogeneity, entropy) 

 Temporal features: Multi-date statistics (mean, 

variance, phenological metrics) 

 Spatial features: Focal statistics within 3×3, 5×5, and 

7×7 kernels 

 

Machine Learning Models 

Three primary algorithms were implemented: 

1. Random Forest (RF): 500 trees with maximum depth 

of 20, minimum samples split of 5 

2. Support Vector Machine (SVM): RBF kernel with 

grid-searched hyperparameters 

3. Deep Learning Ensemble: CNN architecture with 

residual connections, followed by fully connected layers 

 

The CNN architecture consisted of: 

 Input layer: 64×64 pixel patches with 45 channels 

 Convolutional blocks: 3 blocks with 64, 128, and 256 

filters 

 Residual connections: Skip connections every 2 layers 

 Global average pooling followed by dense layers (512, 

256, 128 neurons) 

 Output layer: Single neuron for regression 

 

Model Training and Validation 

The dataset was split into training (60%), validation (20%), 

and test (20%) sets using spatial blocking to minimize 

autocorrelation effects [10]. Hyperparameter optimization 

employed Bayesian optimization with 5-fold cross-

validation. Model performance metrics included R², RMSE, 

MAE, and Lin's concordance correlation coefficient. 

 

Results 

Model Performance Comparison 

Table 1 presents the comparative performance of different 

algorithms across soil properties. The deep learning ensemble 

consistently outperformed individual algorithms, achieving 

the highest R² values for all predicted properties. 

 

Table 1: Model performance metrics for soil property prediction 
 

Soil Property Model R² RMSE MAE CCC 

SOC (%) RF 0.82 0.41 0.32 0.85 

 SVM 0.84 0.39 0.30 0.87 

 DL Ensemble 0.89 0.32 0.24 0.91 

Clay (%) RF 0.78 4.21 3.35 0.80 

 SVM 0.81 3.92 3.11 0.83 

 DL Ensemble 0.85 3.48 2.76 0.87 

pH RF 0.76 0.48 0.38 0.78 

 SVM 0.79 0.45 0.35 0.81 

 DL Ensemble 0.83 0.40 0.31 0.85 

Moisture (%) RF 0.86 3.12 2.48 0.88 

 SVM 0.88 2.89 2.30 0.90 

 DL Ensemble 0.91 2.51 1.99 0.93 

 

Feature Importance Analysis 

Feature importance analysis revealed that spectral indices, 

particularly BSI and CI, contributed significantly to SOC and 

clay predictions. SAR backscatter coefficients proved crucial 

for moisture estimation, while terrain attributes enhanced all 

predictions. Figure 1 illustrates the top 15 features for SOC 

prediction. 
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Fig 1: Feature importance ranking for soil organic carbon prediction 

 

Spatial Distribution Patterns 

The generated soil property maps revealed distinct spatial 

patterns correlating with landscape position and management 

practices. SOC concentrations were highest in topographic 

depressions and areas with historical conservation tillage. 

Clay content showed strong associations with parent material 

and drainage patterns [11]. 

 

Temporal Stability Assessment 

Multi-temporal analysis indicated that incorporating imagery 

from multiple dates improved prediction accuracy 

significantly. Table 2 summarizes the impact of temporal data 

integration. 

 

Table 2: Effect of multi-temporal data on prediction accuracy (R² values) 
 

Soil Property Single Date 3 Dates 5 Dates Full Season 

SOC 0.72 0.81 0.86 0.89 

Clay 0.69 0.77 0.82 0.85 

pH 0.68 0.75 0.80 0.83 

Moisture 0.74 0.83 0.88 0.91 

 

Uncertainty Quantification 

Prediction uncertainty maps generated using Monte Carlo 

dropout revealed higher uncertainty in areas with limited 

training samples and complex topography. Average 

prediction intervals at 95% confidence level were ±0.58% for 

SOC, ±5.2% for clay, ±0.61 for pH, and ±3.8% for moisture 

content. 

 

Discussion 

The superior performance of the deep learning ensemble 

demonstrates the value of advanced AI techniques for soil 

property prediction. The CNN architecture effectively 

captured spatial patterns and nonlinear relationships between 

remote sensing features and soil properties [12]. The 

improvement over traditional machine learning methods (7-

10% higher R²) justifies the additional computational 

requirements. 

Multi-source data integration proved critical for 

comprehensive soil characterization. Optical imagery 

provided information about surface soil properties through 

spectral signatures, while SAR data penetrated vegetation 

cover and captured subsurface moisture dynamics [13]. The 

synergy between these data sources, combined with terrain 

information, enabled robust predictions across diverse 

landscape conditions. 

The importance of temporal data integration aligns with 

previous findings highlighting seasonal variations in soil 

spectral properties [14]. Bare soil periods offered optimal 

conditions for direct soil observation, while vegetation 

dynamics provided indirect indicators of soil fertility and 

moisture regimes. The 23% improvement in accuracy with 

full-season data emphasizes the value of dense time series 

analysis. 

Several limitations warrant consideration. First, the models 

showed reduced performance in areas with heavy vegetation 

cover, suggesting the need for improved vegetation 

correction algorithms. Second, the computational demands of 

deep learning models may limit operational implementation 

for very large areas. Third, model transferability to different 

geographical regions requires further validation. 

The practical implications of this research extend to precision 

agriculture applications, including variable-rate fertilizer 

application, irrigation management, and yield prediction. 

High-resolution soil maps enable farmers to optimize input 

applications, reducing costs and environmental impacts while 

maintaining productivity. Environmental applications 
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include carbon sequestration monitoring, erosion risk 

assessment, and land degradation evaluation. 

Future research directions should focus on: (1) incorporating 

hyperspectral imagery for enhanced spectral discrimination, 

(2) developing physics-informed neural networks that 

integrate pedological knowledge, (3) implementing active 

learning strategies for optimal sampling design, and (4) 

exploring federated learning approaches for privacy-

preserving model development across multiple farms. 

 

Conclusion 

This study successfully demonstrated the potential of AI-

driven approaches for high-resolution soil property 

prediction using remote sensing data. The integration of 

multi-source satellite imagery with advanced deep learning 

techniques achieved prediction accuracies exceeding 

traditional methods by significant margins. Key findings 

include: 

1. Deep learning ensemble models outperformed 

conventional machine learning algorithms, achieving R² 

values of 0.89 for SOC, 0.85 for clay content, 0.83 for 

pH, and 0.91 for moisture prediction. 

2. Multi-temporal data integration improved prediction 

accuracy by 23%, highlighting the importance of 

capturing seasonal variations in soil-landscape 

interactions. 

3. The combination of optical, SAR, and topographic data 

provided complementary information essential for 

comprehensive soil characterization. 

4. Feature importance analysis revealed the critical role of 

soil-specific spectral indices, SAR backscatter 

coefficients, and terrain attributes in prediction models. 

 

The developed framework offers a scalable solution for 

operational soil mapping, supporting precision agriculture 

and environmental management applications. As remote 

sensing data availability continues to increase and AI 

techniques advance, the potential for accurate, timely, and 

cost-effective soil monitoring will expand further. 

Implementation of these technologies can contribute 

significantly to sustainable intensification of agriculture and 

improved environmental stewardship. 
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