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Article Info Abstract
Digital Soil Mapping (DSM) has revolutionized traditional soil survey methods by
P-1SSN: 3051-3448 integrating environmental covariates with advanced statistical and machine
E-ISSN: 3051-3456 learning techniques. This study investigates ensemble modeling approaches for
Volume: 04 improving DSM accuracy and uncertainty quantification across heterogeneous
: landscapes. We implemented and compared five ensemble strategies: bagging,
Issue: 02 boosting, stacking, voting, and Bayesian model averaging, using a comprehensive
July - December 2023 dataset of 1,250 soil samples across 750 km?2 in Central Europe. Environmental
Received: 02-07-2023 covariates included terrain attributes, climate variables, remote sensing indices,
Accepted: 02-08-2023 and legacy soil data. The stacking ensemble approach, combining Random Forest,
Published: 20-08-2023 Gradient Boosting, Support Vector Machines, and Cubist models, achieved the
: highest prediction accuracy for soil organic carbon (R2 = 0.92, RMSE = 0.38%),
Page No: 51-55 clay content (R? = 0.88, RMSE = 3.2%), and pH (R? = 0.86, RMSE = 0.41).

Ensemble methods reduced prediction uncertainty by 28-35% compared to
individual models while providing robust uncertainty estimates through prediction
intervals. Spatial cross-validation revealed consistent performance across different
landscape units, demonstrating model transferability. This research establishes a
framework for operational DSM implementation, offering improved accuracy and
reliability for soil resource assessment and management.
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1. Introduction

Digital Soil Mapping (DSM) represents a paradigm shift in pedometrics, transitioning from traditional polygon-based soil
surveys to continuous, quantitative predictions of soil properties 7. The fundamental principle underlying DSM is the scorpan
model, which conceptualizes soil formation as a function of soil-forming factors, climate, organisms, relief, parent material, age,
and spatial position 1. Modern DSM leverages this framework with machine learning algorithms to predict soil properties from
environmental covariates at unprecedented spatial resolutions (1.

The complexity of soil-landscape relationships poses significant challenges for single-model approaches. Soil formation
processes operate across multiple scales, exhibiting both linear and non-linear relationships with environmental factors 4,
Individual machine learning algorithms may excel in capturing specific aspects of these relationships but often fail to represent
the full complexity of pedogenic processes 2. For instance, linear models effectively capture broad-scale trends but miss local
variations, while tree-based methods excel at modeling non-linear interactions but may overfit in data-sparse regions [,
Ensemble modeling addresses these limitations by combining predictions from multiple base learners, leveraging the principle
that diverse models capture different aspects of the underlying soil-landscape relationships [*°l. The theoretical foundation of
ensemble methods rests on the bias-variance decomposition of prediction error. While individual models trade off between bias
and variance, ensembles can reduce both components simultaneously through strategic combination of diverse learners 1. This
approach has demonstrated success in various environmental modeling applications, yet its potential for DSM remains
underexplored 8, Recent advances in computational resources and algorithm development have made sophisticated ensemble
techniques feasible for large-scale DSM applications 7],
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However, critical questions remain regarding optimal
ensemble design, base learner selection, and uncertainty
quantification. Furthermore, the transferability of ensemble
models across different landscapes and the interpretability of
complex model combinations require  systematic
investigation (131,

This study addresses these knowledge gaps by: (1)
implementing and comparing five distinct ensemble
strategies for DSM, (2) evaluating their performance across
multiple soil properties and landscape contexts, (3)
developing robust uncertainty quantification methods for
ensemble predictions, and (4) assessing computational
efficiency and operational feasibility. The objective is to
establish best practices for ensemble-based DSM that balance
prediction accuracy, uncertainty characterization, and
practical implementation considerations.

Materials and Methods

Study Area and Soil Sampling

The study area encompassed 750 km2 in Central Europe,
characterized by diverse geological substrates, topographic
gradients (elevation range: 150-1,200 m), and land use
patterns including agriculture (45%), forest (35%), grassland
(15%), and urban areas (5%). This heterogeneity provided an
ideal testing ground for ensemble model performance across
varied pedogenic environments [,

Soil sampling followed a conditioned Latin hypercube
design, ensuring representative coverage of environmental
feature space while maintaining spatial balance %1, A total of
1,250 soil samples were collected at 0-30 cm depth during
2021-2022. Laboratory analyses determined soil organic
carbon (SOC) using dry combustion, clay content via laser
diffraction, and pH in 1:2.5 soil-water suspension 11,

Environmental Covariates

We compiled 52 environmental covariates representing

scorpan factors:

e Climate variables: Mean annual temperature,
precipitation, potential evapotranspiration, and seasonal
variations derived from 30-year climatologies [,

e Organisms: Vegetation indices from Sentinel-2 imagery
(NDVI, EVI, SAVI), land use classification, and net
primary productivity estimates (€],

o Relief: Terrain attributes calculated from 10m LiDAR
DEM including slope, aspect, curvature, topographic
wetness index (TWI), multi-resolution valley bottom
flatness (MRVBF), and terrain ruggedness [*21,

e Parent material: Geological maps (1:50,000), gamma-
ray spectrometry data (K, U, Th), and magnetic
susceptibility measurements (1,

e Spatial position: Geographic coordinates and distance-
based predictors capturing spatial autocorrelation
patterns [,
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Base Learning Algorithms
Five base learners were selected to capture diverse
modeling approaches:

1. Random Forest (RF): 500 trees, mtry optimized via
out-of-bag error

2. Gradient Boosting Machine (GBM): Learning rate
0.01, 1000 iterations, 5-fold CV for early stopping

3. Support Vector Machine (SVM): Radial basis function
kernel, e-regression, grid-searched parameters

4. Cubist: Committee model with 20 committees and 10
neighbors

e Regularized Linear Model (LASSO): L\ selected via
10-fold cross-validation
Ensemble Strategies
Bagging Ensemble: Bootstrap aggregation of 50 model
instances with random 80% sample selection and 70%
feature subsampling 271,

e Boosting Ensemble: Sequential training  with
AdaBoost.R2 algorithm, emphasizing misclassified
samples through adaptive weighting [,

e Voting Ensemble: Weighted average of base learner
predictions, weights determined by individual model
cross-validation performance 141,

e Stacking Ensemble: Two-level architecture with base
learners at level-1 and meta-learner (GBM) at level-2,
trained on out-of-fold predictions to prevent overfitting
8]

e Bayesian Model Averaging (BMA): Probabilistic
combination accounting for model uncertainty, weights
derived from marginal likelihood estimates (14,

Model Evaluation and Uncertainty Quantification

Model performance was assessed using spatial cross-

validation with 100 random splits (70% training, 30% testing)

respecting spatial autocorrelation through blocking [,

Metrics included R?, RMSE, MAE, and Lin's concordance

correlation coefficient (CCC).

e  Uncertainty quantification employed:

e Prediction intervals via quantile regression forests

e Bootstrap-based confidence intervals (1000 iterations)

e Variance decomposition to separate aleatoric and
epistemic uncertainty.

Computational Implementation

All analyses were implemented in R using the mir3
framework for standardized model training and evaluation.
Parallel processing utilized 32 cores for computational
efficiency. Spatial predictions were generated at 30m
resolution using terra package for raster processing.

Table 1: Performance metrics of individual base learners for soil property prediction

Model SOC (%) Clay (%) pH
Rz | RMSE | CCC | RZ | RMSE | CCC | Rz | RMSE | CCC

RF 081 | 052 | 083 |076| 41 | 078 |074| 053 | 0.76
GBM | 083| 049 | 085 |078| 39 | 0.80 | 077 | 050 | 0.79
SYM | 079| 055 | 08l |075| 43 | 077 |075| 052 | 0.77
Cubist | 082 | 051 | 0.84 | 077 | 40 | 079 | 076 | 051 | 0.78
LASSO | 068 | 068 | 0.70 | 065 | 50 | 0.67 | 0.69 | 058 | 0.71
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Results

Base Learner Performance

Individual base learners showed varying performance across
soil properties, with no single algorithm dominating all
predictions. Table 1 summarizes the cross-validation results
for each base learner.
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Ensemble Model Comparison

All ensemble approaches outperformed individual base
learners, with stacking achieving the highest accuracy across
all soil properties (Table 2). The improvement was most
pronounced for SOC prediction, where stacking increased R2
by 11% compared to the best individual model.

Table 2: Comparative performance of ensemble modeling approaches

SOC (%) Clay (%) pH
Ensemble Method RZ | RMSE | RZ | RMSE | R? | RMSE
Bagging 0.87 0.43 0.83 35 0.81 0.45
Boosting 089 | 040 | 085 | 33 |08 | 043
Voting 088 | 042 | 084 34 | 082 | 044
Stacking 092 | 038 | 088 32 | 086 | 041
BMA 090 | 039 | 0.86 33 | 084 | 042

Feature Importance and Model Interpretation
Variable importance analysis across ensemble methods
revealed consistent patterns in covariate contributions. Figure

1 illustrates the top 15 predictors for SOC mapping using the
stacking ensemble.
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Fig 1: Relative importance of environmental covariates for SOC prediction in stacking ensemble

Uncertainty Quantification
Ensemble methods provided more reliable uncertainty
estimates compared to individual models. The stacking

ensemble reduced prediction interval width by 32% while
maintaining 95% coverage probability. Figure 2 displays the
spatial distribution of prediction uncertainty for SOC.
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Fig 2: Spatial distribution of prediction uncertainty (90% prediction interval width) for SOC using stacking ensemble

Computational Efficiency

Processing times varied significantly among ensemble
methods. Voting required minimal additional computation
(5% overhead), while stacking and BMA increased
processing time by 180% and 320%, respectively, compared
to single model runs. However, parallel processing reduced
wall-clock time to operationally feasible levels (<2 hours for
full study area).

Model Transferability

Spatial block cross-validation assessed model transferability
across landscape units. Ensemble methods showed more
consistent performance across blocks (coefficient of
variation: 8-12%) compared to individual models (CV: 15-
22%), indicating improved generalization capability [161,

Discussion

The superior performance of ensemble methods, particularly
stacking, aligns with ensemble learning theory predicting
variance reduction through model diversity Bl. The 11%
improvement in R2 for SOC prediction represents a
substantial advance for operational DSM applications,
potentially reducing sampling requirements for map
validation by 25-30% [,

The success of stacking can be attributed to its hierarchical
structure, where the meta-learner optimally combines base
predictions considering their spatial error patterns 1. This
approach effectively addresses the spatially varying
performance of individual algorithms across different
landscape contexts. For instance, RF excelled in forested
areas with complex terrain, while Cubist performed better in
agricultural plains, patterns captured and exploited by the
stacking meta-learner (%1,

Feature importance analysis revealed the dominant role of
terrain attributes and vegetation indices, consistent with
pedological understanding of soil-landscape relationships [,
The high importance of elevation and TWI reflects
topographic control on water redistribution and erosion-
deposition processes 31, Legacy soil data contributed

significantly despite coarse resolution, highlighting the value
of incorporating historical surveys in DSM frameworks I,
Uncertainty quantification represents a critical advancement
for DSM applications. The narrower prediction intervals
from ensemble methods provide more precise information for
risk assessment in precision agriculture and environmental
management (81 The spatial patterns of uncertainty align
with sampling density and landscape complexity, offering
guidance for targeted future sampling campaigns [,

Several limitations warrant consideration. First, ensemble
methods' increased complexity challenges  model
interpretation, potentially limiting adoption by end-users
preferring transparent approaches [*?1. Second, computational
demands, while manageable for this study area, may become
prohibitive for continental-scale applications without high-
performance computing resources . Third, the optimal
ensemble configuration likely varies with soil property and
landscape context, requiring adaptive selection strategies 1%,
The implications for operational DSM are substantial.
Ensemble methods offer a pathway to achieve mapping
accuracies approaching traditional survey standards while
providing continuous spatial predictions 41, Integration with
precision agriculture systems could enable variable-rate
applications optimized at sub-field scales, potentially
increasing nutrient use efficiency by 20-30% &,

Future research should explore deep learning ensembles
incorporating convolutional neural networks for automatic
feature extraction from high-resolution imagery [,
Additionally, active learning frameworks could optimize
sampling designs based on ensemble uncertainty estimates,
maximizing information gain per sample !4, Climate change
impacts on soil properties necessitate temporal ensemble

methods capable of capturing and predicting soil dynamics
17

Conclusion
This comprehensive evaluation of ensemble modeling
approaches for DSM demonstrates their superiority over
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individual algorithms across multiple soil properties and

landscape contexts. Key findings include:

1. Stacking ensembles achieved the highest prediction
accuracy, with R2 values of 0.92 for SOC, 0.88 for clay
content, and 0.86 for pH, representing 11%, 13%, and
12% improvements over the best individual models,
respectively.

2. Ensemble methods provided more reliable uncertainty
estimates, reducing prediction interval width by 28-35%
while maintaining appropriate coverage probabilities.

3. Variable importance analysis confirmed the critical role
of terrain attributes, vegetation indices, and legacy soil
data in DSM, with ensemble methods better capturing
their complex interactions.

4. Spatial cross-validation demonstrated improved model
transferability for ensemble approaches, with more
consistent performance across diverse landscape units.

5. While computational demands increased by 180-320%,
parallel processing maintained operational feasibility for
regional-scale applications.

The research establishes ensemble modeling, particularly
stacking, as a best practice for operational DSM
implementation. The framework developed provides
practitioners with guidelines for ensemble construction,
uncertainty quantification, and computational optimization.
As DSM transitions from research to operational
implementation, ensemble methods offer the accuracy,
reliability, and uncertainty characterization necessary for
informed decision-making in soil resource management.
Future integration with emerging technologies, including
deep learning and hyperspectral remote sensing, promises
further advances in digital soil mapping capabilities.
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