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Abstract 

Digital Soil Mapping (DSM) has revolutionized traditional soil survey methods by 

integrating environmental covariates with advanced statistical and machine 

learning techniques. This study investigates ensemble modeling approaches for 

improving DSM accuracy and uncertainty quantification across heterogeneous 

landscapes. We implemented and compared five ensemble strategies: bagging, 

boosting, stacking, voting, and Bayesian model averaging, using a comprehensive 

dataset of 1,250 soil samples across 750 km² in Central Europe. Environmental 

covariates included terrain attributes, climate variables, remote sensing indices, 

and legacy soil data. The stacking ensemble approach, combining Random Forest, 

Gradient Boosting, Support Vector Machines, and Cubist models, achieved the 

highest prediction accuracy for soil organic carbon (R² = 0.92, RMSE = 0.38%), 

clay content (R² = 0.88, RMSE = 3.2%), and pH (R² = 0.86, RMSE = 0.41). 

Ensemble methods reduced prediction uncertainty by 28-35% compared to 

individual models while providing robust uncertainty estimates through prediction 

intervals. Spatial cross-validation revealed consistent performance across different 

landscape units, demonstrating model transferability. This research establishes a 

framework for operational DSM implementation, offering improved accuracy and 

reliability for soil resource assessment and management. 
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1. Introduction 

Digital Soil Mapping (DSM) represents a paradigm shift in pedometrics, transitioning from traditional polygon-based soil 

surveys to continuous, quantitative predictions of soil properties [17]. The fundamental principle underlying DSM is the scorpan 

model, which conceptualizes soil formation as a function of soil-forming factors, climate, organisms, relief, parent material, age, 

and spatial position [3]. Modern DSM leverages this framework with machine learning algorithms to predict soil properties from 

environmental covariates at unprecedented spatial resolutions [8]. 

The complexity of soil-landscape relationships poses significant challenges for single-model approaches. Soil formation 

processes operate across multiple scales, exhibiting both linear and non-linear relationships with environmental factors [14]. 

Individual machine learning algorithms may excel in capturing specific aspects of these relationships but often fail to represent 

the full complexity of pedogenic processes [2]. For instance, linear models effectively capture broad-scale trends but miss local 

variations, while tree-based methods excel at modeling non-linear interactions but may overfit in data-sparse regions [11]. 

Ensemble modeling addresses these limitations by combining predictions from multiple base learners, leveraging the principle 

that diverse models capture different aspects of the underlying soil-landscape relationships [19]. The theoretical foundation of 

ensemble methods rests on the bias-variance decomposition of prediction error. While individual models trade off between bias 

and variance, ensembles can reduce both components simultaneously through strategic combination of diverse learners [5]. This 

approach has demonstrated success in various environmental modeling applications, yet its potential for DSM remains 

underexplored [16]. Recent advances in computational resources and algorithm development have made sophisticated ensemble 

techniques feasible for large-scale DSM applications [7].
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 However, critical questions remain regarding optimal 

ensemble design, base learner selection, and uncertainty 

quantification. Furthermore, the transferability of ensemble 

models across different landscapes and the interpretability of 

complex model combinations require systematic 

investigation [13]. 

This study addresses these knowledge gaps by: (1) 

implementing and comparing five distinct ensemble 

strategies for DSM, (2) evaluating their performance across 

multiple soil properties and landscape contexts, (3) 

developing robust uncertainty quantification methods for 

ensemble predictions, and (4) assessing computational 

efficiency and operational feasibility. The objective is to 

establish best practices for ensemble-based DSM that balance 

prediction accuracy, uncertainty characterization, and 

practical implementation considerations. 

 

Materials and Methods 

Study Area and Soil Sampling 

The study area encompassed 750 km² in Central Europe, 

characterized by diverse geological substrates, topographic 

gradients (elevation range: 150-1,200 m), and land use 

patterns including agriculture (45%), forest (35%), grassland 

(15%), and urban areas (5%). This heterogeneity provided an 

ideal testing ground for ensemble model performance across 

varied pedogenic environments [4]. 

Soil sampling followed a conditioned Latin hypercube 

design, ensuring representative coverage of environmental 

feature space while maintaining spatial balance [15]. A total of 

1,250 soil samples were collected at 0-30 cm depth during 

2021-2022. Laboratory analyses determined soil organic 

carbon (SOC) using dry combustion, clay content via laser 

diffraction, and pH in 1:2.5 soil-water suspension [10]. 

 

Environmental Covariates 

We compiled 52 environmental covariates representing 

scorpan factors: 

 Climate variables: Mean annual temperature, 

precipitation, potential evapotranspiration, and seasonal 

variations derived from 30-year climatologies [1]. 

 Organisms: Vegetation indices from Sentinel-2 imagery 

(NDVI, EVI, SAVI), land use classification, and net 

primary productivity estimates [18]. 

 Relief: Terrain attributes calculated from 10m LiDAR 

DEM including slope, aspect, curvature, topographic 

wetness index (TWI), multi-resolution valley bottom 

flatness (MRVBF), and terrain ruggedness [12]. 

 Parent material: Geological maps (1:50,000), gamma-

ray spectrometry data (K, U, Th), and magnetic 

susceptibility measurements [6]. 

 Spatial position: Geographic coordinates and distance-

based predictors capturing spatial autocorrelation 

patterns [9]. 

 

Base Learning Algorithms 
Five base learners were selected to capture diverse 

modeling approaches: 

1. Random Forest (RF): 500 trees, mtry optimized via 

out-of-bag error 

2. Gradient Boosting Machine (GBM): Learning rate 

0.01, 1000 iterations, 5-fold CV for early stopping 

3. Support Vector Machine (SVM): Radial basis function 

kernel, ε-regression, grid-searched parameters 

4. Cubist: Committee model with 20 committees and 10 

neighbors 

 Regularized Linear Model (LASSO): λ selected via 

10-fold cross-validation 

 Ensemble Strategies 

 Bagging Ensemble: Bootstrap aggregation of 50 model 

instances with random 80% sample selection and 70% 

feature subsampling [17]. 

 Boosting Ensemble: Sequential training with 

AdaBoost.R2 algorithm, emphasizing misclassified 

samples through adaptive weighting [3]. 

 Voting Ensemble: Weighted average of base learner 

predictions, weights determined by individual model 

cross-validation performance [14]. 

 Stacking Ensemble: Two-level architecture with base 

learners at level-1 and meta-learner (GBM) at level-2, 

trained on out-of-fold predictions to prevent overfitting 
[8]. 

 Bayesian Model Averaging (BMA): Probabilistic 

combination accounting for model uncertainty, weights 

derived from marginal likelihood estimates [11]. 

 

Model Evaluation and Uncertainty Quantification 

Model performance was assessed using spatial cross-

validation with 100 random splits (70% training, 30% testing) 

respecting spatial autocorrelation through blocking [19]. 

Metrics included R², RMSE, MAE, and Lin's concordance 

correlation coefficient (CCC). 

 Uncertainty quantification employed: 

 Prediction intervals via quantile regression forests 

 Bootstrap-based confidence intervals (1000 iterations) 

 Variance decomposition to separate aleatoric and 

epistemic uncertainty. 

 

Computational Implementation 

All analyses were implemented in R using the mlr3 

framework for standardized model training and evaluation. 

Parallel processing utilized 32 cores for computational 

efficiency. Spatial predictions were generated at 30m 

resolution using terra package for raster processing.

 

Table 1: Performance metrics of individual base learners for soil property prediction 
 

Model 
SOC (%) Clay (%) pH 

R² RMSE CCC R² RMSE CCC R² RMSE CCC 

RF 0.81 0.52 0.83 0.76 4.1 0.78 0.74 0.53 0.76 

GBM 0.83 0.49 0.85 0.78 3.9 0.80 0.77 0.50 0.79 

SVM 0.79 0.55 0.81 0.75 4.3 0.77 0.75 0.52 0.77 

Cubist 0.82 0.51 0.84 0.77 4.0 0.79 0.76 0.51 0.78 

LASSO 0.68 0.68 0.70 0.65 5.0 0.67 0.69 0.58 0.71 
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Results 

Base Learner Performance 

Individual base learners showed varying performance across 

soil properties, with no single algorithm dominating all 

predictions. Table 1 summarizes the cross-validation results 

for each base learner. 

Ensemble Model Comparison 

All ensemble approaches outperformed individual base 

learners, with stacking achieving the highest accuracy across 

all soil properties (Table 2). The improvement was most 

pronounced for SOC prediction, where stacking increased R² 

by 11% compared to the best individual model. 
 

Table 2: Comparative performance of ensemble modeling approaches 
 

Ensemble Method 
SOC (%) Clay (%) pH 

R² RMSE R² RMSE R² RMSE 

Bagging 0.87 0.43 0.83 3.5 0.81 0.45 

Boosting 0.89 0.40 0.85 3.3 0.83 0.43 

Voting 0.88 0.42 0.84 3.4 0.82 0.44 

Stacking 0.92 0.38 0.88 3.2 0.86 0.41 

BMA 0.90 0.39 0.86 3.3 0.84 0.42 

 

Feature Importance and Model Interpretation 

Variable importance analysis across ensemble methods 

revealed consistent patterns in covariate contributions. Figure 

1 illustrates the top 15 predictors for SOC mapping using the 

stacking ensemble. 

 

 
 

Fig 1: Relative importance of environmental covariates for SOC prediction in stacking ensemble 

 

Uncertainty Quantification 

Ensemble methods provided more reliable uncertainty 

estimates compared to individual models. The stacking 

ensemble reduced prediction interval width by 32% while 

maintaining 95% coverage probability. Figure 2 displays the 

spatial distribution of prediction uncertainty for SOC. 
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Fig 2: Spatial distribution of prediction uncertainty (90% prediction interval width) for SOC using stacking ensemble 

 

Computational Efficiency 

Processing times varied significantly among ensemble 

methods. Voting required minimal additional computation 

(5% overhead), while stacking and BMA increased 

processing time by 180% and 320%, respectively, compared 

to single model runs. However, parallel processing reduced 

wall-clock time to operationally feasible levels (<2 hours for 

full study area). 

 

Model Transferability 

Spatial block cross-validation assessed model transferability 

across landscape units. Ensemble methods showed more 

consistent performance across blocks (coefficient of 

variation: 8-12%) compared to individual models (CV: 15-

22%), indicating improved generalization capability [16]. 

 

Discussion 

The superior performance of ensemble methods, particularly 

stacking, aligns with ensemble learning theory predicting 

variance reduction through model diversity [5]. The 11% 

improvement in R² for SOC prediction represents a 

substantial advance for operational DSM applications, 

potentially reducing sampling requirements for map 

validation by 25-30% [2]. 

The success of stacking can be attributed to its hierarchical 

structure, where the meta-learner optimally combines base 

predictions considering their spatial error patterns [7]. This 

approach effectively addresses the spatially varying 

performance of individual algorithms across different 

landscape contexts. For instance, RF excelled in forested 

areas with complex terrain, while Cubist performed better in 

agricultural plains, patterns captured and exploited by the 

stacking meta-learner [13]. 

Feature importance analysis revealed the dominant role of 

terrain attributes and vegetation indices, consistent with 

pedological understanding of soil-landscape relationships [4]. 

The high importance of elevation and TWI reflects 

topographic control on water redistribution and erosion-

deposition processes [15]. Legacy soil data contributed 

significantly despite coarse resolution, highlighting the value 

of incorporating historical surveys in DSM frameworks [9]. 

Uncertainty quantification represents a critical advancement 

for DSM applications. The narrower prediction intervals 

from ensemble methods provide more precise information for 

risk assessment in precision agriculture and environmental 

management [18]. The spatial patterns of uncertainty align 

with sampling density and landscape complexity, offering 

guidance for targeted future sampling campaigns [1]. 

Several limitations warrant consideration. First, ensemble 

methods' increased complexity challenges model 

interpretation, potentially limiting adoption by end-users 

preferring transparent approaches [12]. Second, computational 

demands, while manageable for this study area, may become 

prohibitive for continental-scale applications without high-

performance computing resources [6]. Third, the optimal 

ensemble configuration likely varies with soil property and 

landscape context, requiring adaptive selection strategies [10]. 

The implications for operational DSM are substantial. 

Ensemble methods offer a pathway to achieve mapping 

accuracies approaching traditional survey standards while 

providing continuous spatial predictions [19]. Integration with 

precision agriculture systems could enable variable-rate 

applications optimized at sub-field scales, potentially 

increasing nutrient use efficiency by 20-30% [3]. 

Future research should explore deep learning ensembles 

incorporating convolutional neural networks for automatic 

feature extraction from high-resolution imagery [8]. 

Additionally, active learning frameworks could optimize 

sampling designs based on ensemble uncertainty estimates, 

maximizing information gain per sample [11]. Climate change 

impacts on soil properties necessitate temporal ensemble 

methods capable of capturing and predicting soil dynamics 
[17]. 

 

Conclusion 

This comprehensive evaluation of ensemble modeling 

approaches for DSM demonstrates their superiority over 
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individual algorithms across multiple soil properties and 

landscape contexts. Key findings include: 

1. Stacking ensembles achieved the highest prediction 

accuracy, with R² values of 0.92 for SOC, 0.88 for clay 

content, and 0.86 for pH, representing 11%, 13%, and 

12% improvements over the best individual models, 

respectively. 

2. Ensemble methods provided more reliable uncertainty 

estimates, reducing prediction interval width by 28-35% 

while maintaining appropriate coverage probabilities. 

3. Variable importance analysis confirmed the critical role 

of terrain attributes, vegetation indices, and legacy soil 

data in DSM, with ensemble methods better capturing 

their complex interactions. 

4. Spatial cross-validation demonstrated improved model 

transferability for ensemble approaches, with more 

consistent performance across diverse landscape units. 

5. While computational demands increased by 180-320%, 

parallel processing maintained operational feasibility for 

regional-scale applications. 

 

The research establishes ensemble modeling, particularly 

stacking, as a best practice for operational DSM 

implementation. The framework developed provides 

practitioners with guidelines for ensemble construction, 

uncertainty quantification, and computational optimization. 

As DSM transitions from research to operational 

implementation, ensemble methods offer the accuracy, 

reliability, and uncertainty characterization necessary for 

informed decision-making in soil resource management. 

Future integration with emerging technologies, including 

deep learning and hyperspectral remote sensing, promises 

further advances in digital soil mapping capabilities. 
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