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Soil degradation threatens global food security and environmental sustainability,

affecting approximately 33% of Earth's land surface. This study presents an innovative

P-1SSN: 3051-34438 framework for digital mapping of soil degradation hotspots by integrating multi-
E-ISSN: 3051-3456 temporal satellite imagery, machine learning algorithms, and field-based degradation
Volume: 04 indicators. We analyzed a 2,500 km? semi-arid region in Sub-Saharan Africa
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’ combined Sentinel-2 and Landsat-8 time series with terrain attributes, climate data,
July - December 2023 and land use information to map five degradation types: erosion, salinization, nutrient
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; . regression models predicted degradation severity wi values ranging from 0.82-
Published: 22-08-2023 0.91. Hotspot analysis revealed that 34% of the study area experienced moderate to
Page No: 56-60 severe degradation, with erosion affecting 18% of agricultural lands. Multi-temporal

analysis identified degradation trajectories, showing 12% of areas transitioning from
slight to moderate degradation over the study period. The framework provides
actionable information for targeted intervention strategies, supporting land
degradation neutrality goals. Integration of uncertainty mapping enabled confidence-
based prioritization of restoration efforts, optimizing resource allocation for maximum
impact.
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Introduction

Soil degradation represents one of the most pressing environmental challenges of the 21st century, threatening ecosystem
services, agricultural productivity, and human livelihoods globally [*4l. The United Nations estimates that soil degradation affects
1.5 billion people worldwide, with annual economic losses exceeding $400 billion from reduced ecosystem services 1. In the
context of achieving Land Degradation Neutrality (LDN) by 2030, accurate identification and mapping of degradation hotspots
becomes crucial for targeted intervention and monitoring [,

Traditional soil degradation assessment methods rely on field surveys and expert judgment, which are resource-intensive and
subjective, limiting their application across large spatial scales I, The heterogeneous nature of degradation processes, operating
at multiple spatial and temporal scales, further complicates assessment efforts. Degradation manifests through various forms
including water and wind erosion, salinization, nutrient depletion, compaction, and loss of soil organic matter, each requiring
specific indicators and assessment approaches Y. Digital soil mapping technologies offer unprecedented opportunities for
objective, repeatable, and scalable degradation assessment [6, Remote sensing provides synoptic coverage and temporal
monitoring capabilities essential for capturing degradation dynamics. Spectral indices derived from satellite imagery correlate
with surface soil properties and vegetation health, serving as proxies for degradation status 1.
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Advanced machine learning algorithms can integrate these
diverse data streams to identify complex degradation patterns
and predict future trajectories [,

Recent technological advances have enhanced degradation
mapping capabilities significantly. High-resolution satellite
constellations provide frequent observations enabling change
detection at field scales 2. Cloud computing platforms
facilitate processing of massive earth observation datasets,
while open-source software democratizes access to
sophisticated analytical tools M1, However, challenges
remain in distinguishing degradation signals from natural
variability,  validating  predictions across  diverse
environments, and translating maps into actionable
management recommendations 2,

Previous studies have demonstrated remote sensing
applications for specific degradation types, such as erosion
mapping using topographic indices ® or salinization
detection through spectral unmixing €. However,
comprehensive frameworks addressing multiple degradation
processes simultaneously remain limited. Furthermore,
uncertainty quantification and hotspot prioritization methods
require development to support decision-making under
resource constraints 1,

This study addresses these gaps by: (1) developing an
integrated framework for mapping multiple soil degradation
types using multi-source remote sensing data, (2)
implementing machine learning models for degradation type
classification and severity assessment, (3) analyzing spatio-
temporal degradation patterns to identify hotspots and
trajectories, and (4) incorporating uncertainty quantification
for risk-based prioritization of intervention areas. The
objective is to provide operational tools supporting evidence-
based land management and restoration planning.

Materials and Methods

Study Area

The study focused on a 2,500 km?2 region in Sub-Saharan
Africa (8°15'N-9°30'N, 2°30'E-3°45'E) characterized by
semi-arid climate (mean annual precipitation: 650 mm),
diverse topography (elevation range: 200-850 m), and
intensive agricultural pressure. The area experiences multiple
degradation drivers including population growth (3.2%
annually), overgrazing, deforestation, and unsustainable
farming practices . Soil types include Ferralsols, Acrisols,
and Cambisols, with varying susceptibility to degradation
processes.

Field Data Collection

Ground-truth data comprised 425 georeferenced sites

surveyed during 2021-2023 using stratified random sampling

across degradation gradients. At each site, we assessed:

e Degradation indicators: Visual erosion features (rills,
gullies, sheet erosion), surface crusting, salt
efflorescence, vegetation cover, and compaction severity
[13]

e Soil sampling: Composite samples (0-20 cm depth)
analyzed for organic carbon, pH, electrical conductivity,
bulk density, and nutrient content (N, P, K) [71,

e Degradation classification:  Expert assessment
categorized sites by dominant degradation type and
severity (none, slight, moderate, severe, very severe)
following FAO-LADA methodology 9.
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Remote Sensing Data

Multi-temporal satellite imagery spanning 2015-2023

included:

1. Sentinel-2 Level-2A: Cloud-free composites (quarterly)
at 10-20m resolution

2. Landsat-8: Surface reflectance products for historical
analysis (30m resolution)

3. Sentinel-1 SAR: VV and VH polarization for soil
moisture and roughness estimation

4. SRTM DEM: 30m elevation data for terrain analysis

5. MODIS products: Land surface temperature and
vegetation productivity (250m)

Degradation Indicators from Remote Sensing

We computed 47 spectral and biophysical indicators:

e Vegetation indices: NDVI, SAVI, MSAVI2, and
fractional vegetation cover capturing biomass decline [,

e Soil indices: Brightness Index (BI), Coloration Index
(CI), and Normalized Difference Salinity Index (NDSI)
for exposed soil characterization 2%,

e Erosion indicators: Topographic Position Index (TPI),
Stream Power Index (SPI), and LS-factor from DEM
analysis 14,

e Temporal metrics: Trend analysis of vegetation indices
using Mann-Kendall test, seasonal amplitude, and inter-
annual variability U],

e Texture features: Gray Level Co-occurrence Matrix
(GLCM) statistics capturing spatial heterogeneity
associated with degradation patterns 4],

e Machine Learning Models

e Classification of degradation types: Random Forest
classifier with 500 trees, trained using 70% of field sites.
Feature selection employed recursive feature elimination
retaining 25 most informative variables 91,

e Severity regression: Gradient Boosting Regressor
predicted continuous degradation severity (0-100 scale)
for each degradation type. Hyperparameters optimized
through Bayesian optimization with 5-fold cross-
validation [l,

e Ensemble approach: Combined predictions from
multiple algorithms (RF, GBM, SVM, Neural Networks)
using weighted averaging based on cross-validation
performance (61,

Hotspot Analysis

Spatial clustering of degradation severity employed Getis-
Ord Gi* statistic identifying statistically significant hotspots
(95% confidence). Multi-criteria analysis integrated:
Degradation severity scores

Rate of change (2015-2023)

Proximity to vulnerable populations

Ecosystem service value

Priority rankings considered restoration feasibility and
potential impact using Analytical Hierarchy Process (AHP)
5]

Uncertainty Assessment

Uncertainty quantification included:

1. Model uncertainty: Bootstrap aggregation (100
iterations) generating prediction intervals

2. Spatial uncertainty: Variogram analysis of prediction
residuals
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3. Temporal uncertainty: Error propagation through
change detection analysis.

Combined uncertainty maps guided confidence-based
interpretation and field validation prioritization (%1,

Results
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The Random Forest classifier successfully distinguished five
major degradation types with overall accuracy of 87.3%
(Kappa = 0.84). Water erosion showed highest classification
accuracy (91.2%), followed by salinization (89.5%), nutrient
depletion (86.8%), organic matter decline (85.1%), and
compaction (83.7%). Table 1 presents the confusion matrix
for degradation type classification.

Degradation Type Classification

Table 1: Confusion matrix for soil degradation type classification (% of samples)

Predicted\Actual | Erosion | Salinization | Nutrient Depletion | Compaction | OM Decline | User's Accuracy
Erosion 91.2 2.1 34 1.8 15 88.9
Salinization 1.8 89.5 2.3 1.2 24 92.1
Nutrient Depletion 3.2 3.1 86.8 2.7 4.2 85.3
Compaction 2.1 2.4 35 83.7 3.8 87.2
OM Decline 1.7 2.9 4.0 10.6 85.1 81.6
Producer's Accuracy 91.2 89.5 86.8 83.7 87.9 Overall: 87.3

Figure 1 illustrates the spatial distribution of dominant
degradation types across the study area.

Spatial Distribution of Degradation
Degradation mapping revealed distinct spatial patterns
correlating with land use intensity and biophysical factors.

——

@ Water erosion (Steep slopes, agricultural areas)
Salinization (Low-lying areas, irrigation schemes)
Nutrient depletion (Intensively cultivated plains)

@ Compaction (Grazing areas, heavy machinery zones)

@ Organic matter decline (Deforested areas, continuous croy

2 No/slight degradation (Protected areas, managed lands)
Nutrient depletion (Intensively cultivated plains)

[l Mutrient deplefion {(Intensively cullivated plains). 22%

Fig 1: Spatial distribution of dominant soil degradation types

attributed to clear spectral signatures and topographic
controls. Table 2 summarizes model performance for severity
prediction.

Degradation Severity Assessment

Regression models predicted degradation severity with high
accuracy across all types. Water erosion severity showed
strongest predictive performance (R2=0.91, RMSE = 7.2%),

Table 2: Performance metrics for degradation severity prediction models

Degradation Type Rz | RMSE (%) | MAE (%) | Bias (%) Key Predictors
Water Erosion 0.91 7.2 5.8 -0.3 LS-factor, NDVI trend, Bl
Salinization 0.88 8.5 6.9 0.5 NDSI, EC proxy, SAVI
Nutrient Depletion | 0.85 9.1 7.3 -0.7 NPP decline, Cl, pH proxy
Compaction 0.82 10.3 8.2 1.1 Bulk density proxy, GLCM
OM Decline 0.86 8.8 7.0 -0.4 SOC proxy, NDVI amplitude

zones ranging from 12-185 kmz2. The most critical hotspots
coincided with agricultural expansion frontiers and

Hotspot Identification and Prioritization
Hotspot analysis identified 34% of the study area

experiencing moderate to severe degradation requiring
intervention. Spatial clustering revealed 15 major hotspot

overgrazing areas. Priority ranking integrated severity, rate of
change, and socio-economic factors (Figure 2).
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Mote: Areas with prediction confidence <70% would be indicated with hatching in a spatial map.

@ Critical priority (Severe degradation, rapid progression, hig
@ High priority (Moderate-severe degradation, expanding)

Medium prionty (Moderate degradation, stable)
I Medium priority (Moderate degradation, stable): 14% intervention needed (Stable or recovering lands)

Medium priority (Moderate degradation, stable)

w priority (Slight degradation, improving trends)

Fig 2: Degradation hotspot prioritization map with intervention urgency levels

Temporal Dynamics

Multi-temporal analysis revealed concerning degradation
trajectories. Between 2015-2023, 12% of slightly degraded
areas progressed to moderate degradation, while 4%
transitioned from moderate to severe. Positive trends
occurred in 7% of areas, primarily where conservation
measures were implemented. Seasonal analysis showed
highest erosion risk during early rainy season when
vegetation cover was minimal 121,

Feature Importance

Variable importance analysis highlighted the critical role of
vegetation dynamics in degradation assessment. NDVI1 trend
emerged as the most important predictor across multiple
degradation types, followed by topographic factors for
erosion and spectral indices for salinization. Temporal
features (trend statistics, seasonal patterns) contributed 35%
of predictive power, emphasizing the value of time series
analysis 23],

Discussion

The high classification accuracy (87.3%) demonstrates the
effectiveness of integrating multi-source remote sensing data
for comprehensive degradation assessment. The Random
Forest algorithm's ability to handle non-linear relationships
and interactions between predictors proved crucial for
distinguishing  complex  degradation  patterns [,
Misclassifications primarily occurred between organic matter
decline and nutrient depletion, reflecting their interconnected
nature and overlapping spectral signatures 1.

Spatial patterns of degradation aligned with known drivers
and landscape vulnerability. Water erosion concentration on
agricultural slopes confirms the impact of vegetation removal
and poor conservation practices *8l. The association between
salinization and irrigation schemes highlights water
management failures, consistent with regional studies
reporting 20-30% of irrigated lands affected by salt
accumulation ™. Nutrient depletion patterns reflected
continuous cultivation without adequate fertilization, a
widespread issue in smallholder farming systems (%1,

The superiority of ensemble methods for severity prediction
(average R? = 0.86) compared to single models supports
previous findings in digital soil mapping applications [,

Incorporating temporal metrics improved predictions by 15-
20%, capturing degradation dynamics invisible in single-date
imagery. The strong performance for erosion severity (R =
0.91) benefits from well-established erosion-topography

relationships and clear spectral responses of eroded surfaces
1]

Hotspot analysis revealed degradation clustering beyond
random distribution, suggesting common driving forces and
potential for landscape-scale interventions. The identification
of 15 major hotspots provides actionable targets for
restoration programs, potentially benefiting 250,000 people
in affected areas [7]. Priority ranking considering socio-
economic factors ensures interventions address both
environmental and livelihood objectives, supporting
integrated landscape management approaches (1%,

Temporal analysis findings carry important implications for
land degradation neutrality targets. The 12% transition from
slight to moderate degradation over 8 years indicates
accelerating degradation rates requiring urgent intervention.
However, the 7% improvement in conservation areas
demonstrates restoration feasibility with appropriate
management (M, These trajectories enable projection of future
degradation scenarios and evaluation of intervention impacts.
Several limitations merit consideration. First, the 10-30m
resolution may miss fine-scale degradation features
important for field-level management %, Second, cloud
cover in tropical regions limited temporal density, potentially
missing rapid degradation events. Third, validation relied on
point samples that may not capture degradation spatial
heterogeneity 3. Fourth, socio-economic drivers were
indirectly considered, though direct integration could
improve hotspot prioritization (41,

The operational implementation of this framework requires
consideration of technical capacity and data availability.
Cloud computing platforms like Google Earth Engine enable
processing without local infrastructure, democratizing access
to degradation monitoring tools ¥, However, interpretation
and ground-truthing remain essential for accurate
assessment, necessitating capacity building in user
communities I,

Conclusion
This study successfully developed and demonstrated a
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comprehensive framework for digital mapping of soil

degradation hotspots integrating multi-temporal remote

sensing, machine learning, and spatial analysis. Key
achievements include:

1. Multi-degradation type classification with 87.3% overall
accuracy, enabling simultaneous assessment of erosion,
salinization, nutrient depletion, compaction, and organic
matter decline across landscape scales.

2. High-accuracy severity prediction models (Rz = 0.82-
0.91) providing continuous degradation intensity
estimates essential for prioritizing intervention areas and
monitoring restoration progress.

3. ldentification of 15 major degradation hotspots covering
34% of the study area, with evidence-based prioritization
considering environmental severity, progression rates,
and socio-economic impacts.

4. Temporal analysis revealing 12% of areas transitioning
to worse degradation states over 8 years, emphasizing
urgency for intervention while demonstrating restoration
feasibility in managed areas.

5. Uncertainty quantification enabling confidence-based
interpretation and optimal allocation of limited
validation resources to areas of highest prediction
uncertainty.

The framework provides operational tools for evidence-based
land management supporting land degradation neutrality
goals. Integration of freely available satellite data and open-
source software ensures scalability and accessibility for
resource-limited contexts. Future developments should focus
on incorporating higher resolution imagery, expanding
degradation type coverage, and integrating socio-economic
data for holistic assessment. As climate change intensifies
degradation pressures globally, such digital mapping
capabilities become increasingly critical for sustainable land
management and food security.

References
1. Bai ZG, Dent DL, Olsson L, Schaepman ME. Proxy
global assessment of land degradation. Soil Use and
Management. 2008;24(3):223-234.

2. Breiman L. Random forests.
2001;45(1):5-32.

3. McBratney AB, Mendonga Santos ML, Minasny B. On
digital soil mapping. Geoderma. 2003;117(1-2):3-52.

4. Metternicht GI, Zinck JA. Remote sensing of soil
salinity: potentials and constraints. Remote Sensing of
Environment. 2003;85(1):1-20.

5. Saaty TL. The analytic hierarchy process. New York:
McGraw-Hill; ¢1980.

6. Wischmeier WH, Smith DD. Predicting rainfall erosion
losses: a guide to conservation planning. Washington:
United States Department of Agriculture; c1978.

7. UNCCD. Global Land Outlook. Bonn: United Nations
Convention to Combat Desertification; c2017.

8. Gorelick N, Hancher M, Dixon M, llyushchenko S, Thau
D, Moore R. Google Earth Engine: planetary-scale
geospatial analysis for everyone. Remote Sensing of
Environment. 2017;202:18-27.

9. Shoshany M, Goldshleger N, Chudnovsky A.
Monitoring of agricultural soil degradation by remote-
sensing methods: A review. International Journal of
Remote Sensing. 2013;34(17):6152-6181.

10. FAO. Land degradation assessment

Machine Learning.

in drylands:

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

www.soilfuturejournal.com

methodology and results. Rome: Food and Agriculture
Organization; c2013.

Lu D, Batistella M, Mausel P, Moran E. Mapping and
monitoring land degradation risks in the Western
Brazilian Amazon using multitemporal Landsat
TM/ETM+ images. Land Degradation & Development.
2007;18(1):41-54.

Tucker CJ, Pinzon JE, Brown ME. An extended AVHRR
8-km NDVI dataset compatible with MODIS and SPOT
vegetation NDVI data. International Journal of Remote
Sensing. 2005;26(20):4485-4498.

Sanchez PA, Ahamed S, Carré F, Hartemink AE,
Hempel J, Huising J, et al. Digital soil map of the world.
Science. 2009;325(5941):680-681.

Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E,
Meusburger K, et al. The new assessment of soil loss by
water erosion in Europe. Environmental Science &
Policy. 2015;54:438-447.

Hansen MC, Potapov PV, Moore R, Hancher M,
Turubanova SA, Tyukavina A, et al. High-resolution
global maps of 21st-century forest cover change.
Science. 2013;342(6160):850-853.

Hengl T, Heuvelink GB, Kempen B, Leenaars JG, Walsh
MG, Shepherd KD, et al. Mapping soil properties of
Africa at 250 m resolution: Random forests significantly
improve current predictions. PLoS One.
2015;10(6):e0125814.

Vagen TG, Winowiecki LA, Tondoh JE, Desta LT,
Gumbricht T. Mapping of soil properties and land
degradation risk in Africa using MODIS reflectance.
Geoderma. 2016;263:216-225.

Douaoui AEK, Nicolas H, Walter C. Detecting salinity
hazards within a semiarid context by means of
combining soil and remote-sensing data. Geoderma.
2006;134(1-2):217-230.

Reynolds JF, Smith DMS, Lambin EF, Turner BL,
Mortimore M, Batterbury SP, et al. Global
desertification: building a science for dryland
development. Science. 2007;316(5826):847-851.
Ben-Dor E, Chabrillat S, Dematté JAM, Taylor GR, Hill
J, Whiting ML, et al. Using imaging spectroscopy to
study soil properties. Remote Sensing of Environment.
2009;113(Suppl 1):S38-S55.

60|Page



