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Abstract 
Soil degradation threatens global food security and environmental sustainability, 
affecting approximately 33% of Earth's land surface. This study presents an innovative 
framework for digital mapping of soil degradation hotspots by integrating multi-
temporal satellite imagery, machine learning algorithms, and field-based degradation 
indicators. We analyzed a 2,500 km² semi-arid region in Sub-Saharan Africa 
experiencing severe degradation pressures from 2015-2023. The methodology 
combined Sentinel-2 and Landsat-8 time series with terrain attributes, climate data, 
and land use information to map five degradation types: erosion, salinization, nutrient 
depletion, compaction, and organic matter decline. A Random Forest classifier 
achieved overall accuracy of 87.3% for degradation type identification, while 
regression models predicted degradation severity with R² values ranging from 0.82-
0.91. Hotspot analysis revealed that 34% of the study area experienced moderate to 
severe degradation, with erosion affecting 18% of agricultural lands. Multi-temporal 
analysis identified degradation trajectories, showing 12% of areas transitioning from 
slight to moderate degradation over the study period. The framework provides 
actionable information for targeted intervention strategies, supporting land 
degradation neutrality goals. Integration of uncertainty mapping enabled confidence-
based prioritization of restoration efforts, optimizing resource allocation for maximum 
impact. 
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Introduction 

Soil degradation represents one of the most pressing environmental challenges of the 21st century, threatening ecosystem 

services, agricultural productivity, and human livelihoods globally [14]. The United Nations estimates that soil degradation affects 

1.5 billion people worldwide, with annual economic losses exceeding $400 billion from reduced ecosystem services  [7]. In the 

context of achieving Land Degradation Neutrality (LDN) by 2030, accurate identification and mapping of degradation hotspots 

becomes crucial for targeted intervention and monitoring [19]. 

Traditional soil degradation assessment methods rely on field surveys and expert judgment, which are resource-intensive and 

subjective, limiting their application across large spatial scales [3]. The heterogeneous nature of degradation processes, operating 

at multiple spatial and temporal scales, further complicates assessment efforts. Degradation manifests through various forms 

including water and wind erosion, salinization, nutrient depletion, compaction, and loss of soil organic matter, each requiring 

specific indicators and assessment approaches [11]. Digital soil mapping technologies offer unprecedented opportunities for 

objective, repeatable, and scalable degradation assessment [16]. Remote sensing provides synoptic coverage and temporal 

monitoring capabilities essential for capturing degradation dynamics. Spectral indices derived from satellite imagery correlate 

with surface soil properties and vegetation health, serving as proxies for degradation status [5].  
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Advanced machine learning algorithms can integrate these 

diverse data streams to identify complex degradation patterns 

and predict future trajectories [8]. 

Recent technological advances have enhanced degradation 

mapping capabilities significantly. High-resolution satellite 

constellations provide frequent observations enabling change 

detection at field scales [12]. Cloud computing platforms 

facilitate processing of massive earth observation datasets, 

while open-source software democratizes access to 

sophisticated analytical tools [15]. However, challenges 

remain in distinguishing degradation signals from natural 

variability, validating predictions across diverse 

environments, and translating maps into actionable 

management recommendations [2]. 

Previous studies have demonstrated remote sensing 

applications for specific degradation types, such as erosion 

mapping using topographic indices [9] or salinization 

detection through spectral unmixing [18]. However, 

comprehensive frameworks addressing multiple degradation 

processes simultaneously remain limited. Furthermore, 

uncertainty quantification and hotspot prioritization methods 

require development to support decision-making under 

resource constraints [4]. 

This study addresses these gaps by: (1) developing an 

integrated framework for mapping multiple soil degradation 

types using multi-source remote sensing data, (2) 

implementing machine learning models for degradation type 

classification and severity assessment, (3) analyzing spatio-

temporal degradation patterns to identify hotspots and 

trajectories, and (4) incorporating uncertainty quantification 

for risk-based prioritization of intervention areas. The 

objective is to provide operational tools supporting evidence-

based land management and restoration planning. 

 

Materials and Methods 

Study Area 

The study focused on a 2,500 km² region in Sub-Saharan 

Africa (8°15'N-9°30'N, 2°30'E-3°45'E) characterized by 

semi-arid climate (mean annual precipitation: 650 mm), 

diverse topography (elevation range: 200-850 m), and 

intensive agricultural pressure. The area experiences multiple 

degradation drivers including population growth (3.2% 

annually), overgrazing, deforestation, and unsustainable 

farming practices [6]. Soil types include Ferralsols, Acrisols, 

and Cambisols, with varying susceptibility to degradation 

processes. 

 

Field Data Collection 

Ground-truth data comprised 425 georeferenced sites 

surveyed during 2021-2023 using stratified random sampling 

across degradation gradients. At each site, we assessed: 

 Degradation indicators: Visual erosion features (rills, 

gullies, sheet erosion), surface crusting, salt 

efflorescence, vegetation cover, and compaction severity 

[13]. 

 Soil sampling: Composite samples (0-20 cm depth) 

analyzed for organic carbon, pH, electrical conductivity, 

bulk density, and nutrient content (N, P, K) [17]. 

 Degradation classification: Expert assessment 

categorized sites by dominant degradation type and 

severity (none, slight, moderate, severe, very severe) 

following FAO-LADA methodology [10]. 

 

Remote Sensing Data 

Multi-temporal satellite imagery spanning 2015-2023 

included: 

1. Sentinel-2 Level-2A: Cloud-free composites (quarterly) 

at 10-20m resolution 

2. Landsat-8: Surface reflectance products for historical 

analysis (30m resolution) 

3. Sentinel-1 SAR: VV and VH polarization for soil 

moisture and roughness estimation 

4. SRTM DEM: 30m elevation data for terrain analysis 

5. MODIS products: Land surface temperature and 

vegetation productivity (250m) 

 

Degradation Indicators from Remote Sensing 

We computed 47 spectral and biophysical indicators: 

 Vegetation indices: NDVI, SAVI, MSAVI2, and 

fractional vegetation cover capturing biomass decline [1]. 

 Soil indices: Brightness Index (BI), Coloration Index 

(CI), and Normalized Difference Salinity Index (NDSI) 

for exposed soil characterization [20]. 

 Erosion indicators: Topographic Position Index (TPI), 

Stream Power Index (SPI), and LS-factor from DEM 

analysis [14]. 

 Temporal metrics: Trend analysis of vegetation indices 

using Mann-Kendall test, seasonal amplitude, and inter-

annual variability [7]. 

 Texture features: Gray Level Co-occurrence Matrix 

(GLCM) statistics capturing spatial heterogeneity 

associated with degradation patterns [11]. 

 Machine Learning Models 

 Classification of degradation types: Random Forest 

classifier with 500 trees, trained using 70% of field sites. 

Feature selection employed recursive feature elimination 

retaining 25 most informative variables [19]. 

 Severity regression: Gradient Boosting Regressor 

predicted continuous degradation severity (0-100 scale) 

for each degradation type. Hyperparameters optimized 

through Bayesian optimization with 5-fold cross-

validation [3]. 

 Ensemble approach: Combined predictions from 

multiple algorithms (RF, GBM, SVM, Neural Networks) 

using weighted averaging based on cross-validation 

performance [16]. 

 

Hotspot Analysis 

Spatial clustering of degradation severity employed Getis-

Ord Gi* statistic identifying statistically significant hotspots 

(95% confidence). Multi-criteria analysis integrated: 

 Degradation severity scores 

 Rate of change (2015-2023) 

 Proximity to vulnerable populations 

 Ecosystem service value 

 

Priority rankings considered restoration feasibility and 

potential impact using Analytical Hierarchy Process (AHP) 

[5]. 

 

Uncertainty Assessment 

Uncertainty quantification included: 

1. Model uncertainty: Bootstrap aggregation (100 

iterations) generating prediction intervals 

2. Spatial uncertainty: Variogram analysis of prediction 

residuals 
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3. Temporal uncertainty: Error propagation through 

change detection analysis. 

 

Combined uncertainty maps guided confidence-based 

interpretation and field validation prioritization [8]. 

 

Results 

Degradation Type Classification 

The Random Forest classifier successfully distinguished five 

major degradation types with overall accuracy of 87.3% 

(Kappa = 0.84). Water erosion showed highest classification 

accuracy (91.2%), followed by salinization (89.5%), nutrient 

depletion (86.8%), organic matter decline (85.1%), and 

compaction (83.7%). Table 1 presents the confusion matrix 

for degradation type classification. 

 

Table 1: Confusion matrix for soil degradation type classification (% of samples) 
 

Predicted\Actual Erosion Salinization Nutrient Depletion Compaction OM Decline User's Accuracy 

Erosion 91.2 2.1 3.4 1.8 1.5 88.9 

Salinization 1.8 89.5 2.3 1.2 2.4 92.1 

Nutrient Depletion 3.2 3.1 86.8 2.7 4.2 85.3 

Compaction 2.1 2.4 3.5 83.7 3.8 87.2 

OM Decline 1.7 2.9 4.0 10.6 85.1 81.6 

Producer's Accuracy 91.2 89.5 86.8 83.7 87.9 Overall: 87.3 

 

Spatial Distribution of Degradation 

Degradation mapping revealed distinct spatial patterns 

correlating with land use intensity and biophysical factors. 

Figure 1 illustrates the spatial distribution of dominant 

degradation types across the study area. 

 

 
 

Fig 1: Spatial distribution of dominant soil degradation types 

 

Degradation Severity Assessment 

Regression models predicted degradation severity with high 

accuracy across all types. Water erosion severity showed 

strongest predictive performance (R² = 0.91, RMSE = 7.2%), 

attributed to clear spectral signatures and topographic 

controls. Table 2 summarizes model performance for severity 

prediction. 

 

Table 2: Performance metrics for degradation severity prediction models 
 

Degradation Type R² RMSE (%) MAE (%) Bias (%) Key Predictors 

Water Erosion 0.91 7.2 5.8 -0.3 LS-factor, NDVI trend, BI 

Salinization 0.88 8.5 6.9 0.5 NDSI, EC proxy, SAVI 

Nutrient Depletion 0.85 9.1 7.3 -0.7 NPP decline, CI, pH proxy 

Compaction 0.82 10.3 8.2 1.1 Bulk density proxy, GLCM 

OM Decline 0.86 8.8 7.0 -0.4 SOC proxy, NDVI amplitude 

 

Hotspot Identification and Prioritization 

Hotspot analysis identified 34% of the study area 

experiencing moderate to severe degradation requiring 

intervention. Spatial clustering revealed 15 major hotspot 

zones ranging from 12-185 km². The most critical hotspots 

coincided with agricultural expansion frontiers and 

overgrazing areas. Priority ranking integrated severity, rate of 

change, and socio-economic factors (Figure 2). 
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Fig 2: Degradation hotspot prioritization map with intervention urgency levels 

 

Temporal Dynamics 

Multi-temporal analysis revealed concerning degradation 

trajectories. Between 2015-2023, 12% of slightly degraded 

areas progressed to moderate degradation, while 4% 

transitioned from moderate to severe. Positive trends 

occurred in 7% of areas, primarily where conservation 

measures were implemented. Seasonal analysis showed 

highest erosion risk during early rainy season when 

vegetation cover was minimal [12]. 

 

Feature Importance 

Variable importance analysis highlighted the critical role of 

vegetation dynamics in degradation assessment. NDVI trend 

emerged as the most important predictor across multiple 

degradation types, followed by topographic factors for 

erosion and spectral indices for salinization. Temporal 

features (trend statistics, seasonal patterns) contributed 35% 

of predictive power, emphasizing the value of time series 

analysis [15]. 

 

Discussion 

The high classification accuracy (87.3%) demonstrates the 

effectiveness of integrating multi-source remote sensing data 

for comprehensive degradation assessment. The Random 

Forest algorithm's ability to handle non-linear relationships 

and interactions between predictors proved crucial for 

distinguishing complex degradation patterns [2]. 

Misclassifications primarily occurred between organic matter 

decline and nutrient depletion, reflecting their interconnected 

nature and overlapping spectral signatures [9]. 

Spatial patterns of degradation aligned with known drivers 

and landscape vulnerability. Water erosion concentration on 

agricultural slopes confirms the impact of vegetation removal 

and poor conservation practices [18]. The association between 

salinization and irrigation schemes highlights water 

management failures, consistent with regional studies 

reporting 20-30% of irrigated lands affected by salt 

accumulation [4]. Nutrient depletion patterns reflected 

continuous cultivation without adequate fertilization, a 

widespread issue in smallholder farming systems [13]. 

The superiority of ensemble methods for severity prediction 

(average R² = 0.86) compared to single models supports 

previous findings in digital soil mapping applications [16]. 

Incorporating temporal metrics improved predictions by 15-

20%, capturing degradation dynamics invisible in single-date 

imagery. The strong performance for erosion severity (R² = 

0.91) benefits from well-established erosion-topography 

relationships and clear spectral responses of eroded surfaces 

[6]. 

Hotspot analysis revealed degradation clustering beyond 

random distribution, suggesting common driving forces and 

potential for landscape-scale interventions. The identification 

of 15 major hotspots provides actionable targets for 

restoration programs, potentially benefiting 250,000 people 

in affected areas [17]. Priority ranking considering socio-

economic factors ensures interventions address both 

environmental and livelihood objectives, supporting 

integrated landscape management approaches [10]. 

Temporal analysis findings carry important implications for 

land degradation neutrality targets. The 12% transition from 

slight to moderate degradation over 8 years indicates 

accelerating degradation rates requiring urgent intervention. 

However, the 7% improvement in conservation areas 

demonstrates restoration feasibility with appropriate 

management [1]. These trajectories enable projection of future 

degradation scenarios and evaluation of intervention impacts. 

Several limitations merit consideration. First, the 10-30m 

resolution may miss fine-scale degradation features 

important for field-level management [20]. Second, cloud 

cover in tropical regions limited temporal density, potentially 

missing rapid degradation events. Third, validation relied on 

point samples that may not capture degradation spatial 

heterogeneity [11]. Fourth, socio-economic drivers were 

indirectly considered, though direct integration could 

improve hotspot prioritization [14]. 

The operational implementation of this framework requires 

consideration of technical capacity and data availability. 

Cloud computing platforms like Google Earth Engine enable 

processing without local infrastructure, democratizing access 

to degradation monitoring tools [8]. However, interpretation 

and ground-truthing remain essential for accurate 

assessment, necessitating capacity building in user 

communities [3]. 

 

Conclusion 

This study successfully developed and demonstrated a 
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comprehensive framework for digital mapping of soil 

degradation hotspots integrating multi-temporal remote 

sensing, machine learning, and spatial analysis. Key 

achievements include: 

1. Multi-degradation type classification with 87.3% overall 

accuracy, enabling simultaneous assessment of erosion, 

salinization, nutrient depletion, compaction, and organic 

matter decline across landscape scales. 

2. High-accuracy severity prediction models (R² = 0.82-

0.91) providing continuous degradation intensity 

estimates essential for prioritizing intervention areas and 

monitoring restoration progress. 

3. Identification of 15 major degradation hotspots covering 

34% of the study area, with evidence-based prioritization 

considering environmental severity, progression rates, 

and socio-economic impacts. 

4. Temporal analysis revealing 12% of areas transitioning 

to worse degradation states over 8 years, emphasizing 

urgency for intervention while demonstrating restoration 

feasibility in managed areas. 

5. Uncertainty quantification enabling confidence-based 

interpretation and optimal allocation of limited 

validation resources to areas of highest prediction 

uncertainty. 

 

The framework provides operational tools for evidence-based 

land management supporting land degradation neutrality 

goals. Integration of freely available satellite data and open-

source software ensures scalability and accessibility for 

resource-limited contexts. Future developments should focus 

on incorporating higher resolution imagery, expanding 

degradation type coverage, and integrating socio-economic 

data for holistic assessment. As climate change intensifies 

degradation pressures globally, such digital mapping 

capabilities become increasingly critical for sustainable land 

management and food security. 
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