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Abstract 
Soil carbon sequestration represents a critical nature-based solution for climate 
change mitigation, yet accurate quantification of carbon stocks and sequestration 
potential remains challenging across landscape scales. This study developed an 
artificial intelligence framework integrating deep learning algorithms with multi-
source environmental data to predict soil organic carbon (SOC) stocks and identify 
areas with high sequestration potential. We analyzed 1,850 soil profiles across a 
3,200 km² agricultural region, combining spectral data from Sentinel-2 and 
hyperspectral sensors, climate variables, topographic attributes, land management 
history, and soil physicochemical properties. A novel deep neural network 
architecture incorporating attention mechanisms achieved R² = 0.94 for SOC stock 
prediction (0-100 cm depth) with RMSE of 8.7 Mg C ha⁻¹. The AI model identified 
42% of the study area with high sequestration potential (>20 Mg C ha⁻¹ additional 
storage capacity), primarily in degraded croplands and grasslands. Scenario 
modeling revealed that optimized management practices could sequester 2.3 Tg C 
over 20 years, equivalent to 8.4 Tg CO₂ removal. Feature importance analysis 
highlighted vegetation indices, clay content, and precipitation as key predictors. 
The framework provides spatially explicit guidance for carbon farming initiatives, 
supporting evidence-based policy development and verification of carbon credits. 
This research demonstrates AI's transformative potential for scaling soil carbon 
assessment and optimizing climate mitigation strategies. 
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Introduction 
Soils represent the largest terrestrial carbon reservoir, containing approximately 2,500 Pg C in the top 2 meters, exceeding 
atmospheric and vegetation carbon combined [18]. The potential for enhanced soil carbon sequestration through improved land 
management offers a scalable climate mitigation strategy, with estimates suggesting 2-5 Pg C yr⁻¹ sequestration potential 
globally [4]. However, realizing this potential requires accurate baseline assessment of current carbon stocks and identification 
of areas with high sequestration capacity [11]. 
Traditional soil carbon assessment methods face significant limitations in spatial coverage and temporal resolution. Laboratory 
analysis of soil samples, while accurate, proves prohibitively expensive for landscape-scale monitoring, with costs exceeding 
$50 per sample [15]. The high spatial variability of SOC, influenced by complex interactions among climate, vegetation, 
topography, and management practices, necessitates dense sampling that is economically unfeasible [7]. Furthermore, static 
sampling cannot capture carbon dynamics essential for verifying sequestration claims in emerging carbon markets [20]. 
Recent advances in artificial intelligence, particularly deep learning, offer transformative capabilities for environmental 
monitoring and prediction [9]. AI algorithms excel at identifying complex, non-linear patterns in high-dimensional data, making 
them ideally suited for integrating diverse environmental datasets relevant to soil carbon dynamics [14]. Convolutional neural 
networks (CNNs) can extract spatial features from satellite imagery, while recurrent neural networks (RNNs) capture temporal 
dynamics in time series data [3]. The integration of attention mechanisms further enhances model interpretability and performance 

[19]
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Remote sensing technologies provide unprecedented data 
availability for AI-driven soil carbon assessment. 
Multispectral and hyperspectral sensors capture spectral 
signatures correlating with soil organic matter content [6]. 
Synthetic aperture radar penetrates vegetation canopies, 
providing information about soil moisture and structure [12]. 
When combined with ancillary data on climate, topography, 
and land use history, these datasets enable comprehensive 
characterization of factors controlling soil carbon storage [16]. 
Despite growing interest in AI applications for soil science, 
several challenges remain. Model transferability across 
different ecosystems and management systems requires 
careful consideration [2]. The "black box" nature of deep 
learning models raises concerns about interpretability for 
stakeholder acceptance [8]. Additionally, quantifying 
uncertainty in AI predictions is crucial for risk assessment in 
carbon credit verification [17]. 
This study addresses these challenges by developing a 
comprehensive AI framework that: (1) integrates state-of-
the-art deep learning architectures with multi-source 
environmental data, (2) predicts current SOC stocks at high 
spatial resolution with uncertainty quantification, (3) 
identifies areas with high carbon sequestration potential 
based on biophysical capacity and management scenarios, 
and (4) provides interpretable results supporting policy and 
management decisions. The objective is to demonstrate 
operational AI applications for soil carbon assessment 
supporting climate mitigation efforts. 
 
Materials and Methods 
Study Area and Soil Sampling 
The study encompassed 3,200 km² of agricultural landscapes 
in the North American Great Plains (46°30'N-48°00'N, 
97°00'W-99°00'W), characterized by diverse cropping 
systems, grasslands, and conservation practices. This region 
experiences continental climate (mean annual temperature: 
6.8°C, precipitation: 450-650 mm) with Mollisols and 
Vertisols dominating soil types [5]. 
Soil sampling followed a stratified random design based on 
land use, soil type, and topographic position. We collected 
1,850 soil profiles during 2019-2023, with samples at depths 
of 0-10, 10-30, 30-60, and 60-100 cm. Laboratory analyses 
included: 
• SOC concentration: dry combustion method (LECO 

analyzer) 
• Bulk density: core method 
• Texture: laser diffraction particle size analysis 
• pH, CEC, and base saturation: standard methods [13] 

SOC stocks (Mg C ha⁻¹) were calculated accounting for 
bulk density and coarse fragments. 
 

Environmental Covariates 
We assembled 67 environmental covariates representing soil-
forming factors: 
Remote sensing data: 
• Sentinel-2: Monthly cloud-free composites (2019-2023) 

at 10m resolution 
• Hyperspectral imagery: AVIRIS-NG flight lines 

covering 30% of study area (420-2450 nm, 5nm 
bandwidth) 

• Sentinel-1 SAR: VV and VH backscatter coefficients 
Historical Landsat archive: Land use change detection 
(1985-2023) 

Climate variables: Temperature and precipitation: 30-year 
normals and monthly anomalies 

• Potential evapotranspiration, aridity index 
• Growing degree days, frost-free period 

Topographic attributes: LiDAR-derived DEM (1m 
resolution): elevation, slope, aspect, curvature 

• Hydrological indices: TWI, flow accumulation, distance to 
streams 

• Landscape position classification 
Management data: Crop rotation history from farm records 
and satellite classification 

• Tillage practices, cover crop adoption 
• Fertilizer and amendment applications 
• Grazing intensity for grasslands 
•  

Deep Learning Architecture 
We developed a novel Multi-Input Fusion Network (MIFN) 
combining: 
Spatial feature extraction: 3D CNN processing multi-
temporal satellite imagery 

• Input: 64×64×12×T tensor (spatial × spatial × bands × time) 
• Architecture: 4 convolutional blocks with residual 

connections 
• Feature maps: 32, 64, 128, 256 channels 
•  

Tabular data processing: Deep neural network for non-
spatial covariates 

• Input: 45 normalized features 
• Architecture: 5 fully connected layers (512, 256, 128, 64, 32 

neurons) 
• Activation: ReLU with batch normalization 

Attention mechanism: Self-attention module weighting 
feature importance 

• Multi-head attention (8 heads) applied to concatenated 
features 

• Positional encoding for spatial context 
•  

Output layers 
• SOC prediction: Single neuron with linear activation 
• Uncertainty estimation: Mixture density network outputting 

mean and variance 
•  

Model Training and Validation 
The dataset was split using spatial blocking: 60% training, 
20% validation, 20% testing. We implemented: 
• Data augmentation: Random cropping, rotation, and 

spectral perturbation  
• Loss function: Custom loss combining MSE and 

negative log-likelihood for uncertainty  
• Optimization: Adam optimizer with learning rate 

scheduling (initial: 0.001). 
• Regularization: Dropout (0.3), L2 penalty (0.0001), 

early stopping Hyperparameter tuning employed 
Bayesian optimization over 100 iterations. 

 
Sequestration Potential Assessment 
Carbon sequestration potential integrated three components: 

1. Biophysical capacity: Maximum SOC storage based on 
climate, soil texture, and mineralogy using boundary line 
analysis [10]. 
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2. Management scenarios: Simulated SOC changes 
under:  

• No-till adoption 
• Cover crop integration 
• Optimized crop rotations 
• Grassland restoration 
• Agroforestry implementation 

 
Constraint analysis: Accounting for economic feasibility, 
water availability, and existing land use 
The RothC model, parameterized with local data, projected 
20-year carbon dynamics under each scenario [1]. 
 
Uncertainty Quantification 
We implemented ensemble uncertainty estimation: 

• Monte Carlo dropout: 100 forward passes with dropout 
active 

• Bootstrap aggregation: 50 models trained on resampled 
data 

• Gaussian process regression for spatial uncertainty 
Combined uncertainty maps identified areas requiring 
additional sampling. 
 
Results 
Model Performance 
The MIFN architecture achieved exceptional prediction 
accuracy for SOC stocks across all depth intervals. Overall 
performance for 0-100 cm SOC stocks showed R² = 0.94, 
RMSE = 8.7 Mg C ha⁻¹, and MAE = 6.2 Mg C ha⁻¹. 
Performance varied by depth, with surface layers showing 
highest accuracy (Table 1). 

 
Table 1: Model performance metrics for SOC stock prediction by depth interval 

 

Depth (cm) R² RMSE (Mg C ha⁻¹) MAE (Mg C ha⁻¹) Bias (%) CCC 
0-10 0.95 2.8 2.1 -0.8 0.97 
10-30 0.93 3.4 2.6 -1.2 0.96 
30-60 0.91 4.2 3.3 0.5 0.94 

60-100 0.88 5.1 4.0 1.3 0.91 
0-100 (total) 0.94 8.7 6.2 -0.3 0.96 

 
Comparison with traditional machine learning approaches 
demonstrated the superiority of deep learning. Random 
Forest achieved R² = 0.82, while support vector regression 
reached R² = 0.79 for total SOC stocks. 
 
Spatial Distribution of SOC Stocks 

The predicted SOC map revealed pronounced spatial patterns 
correlating with land use history and topographic position 
(Figure 1). Native grasslands contained highest SOC stocks 
(145-185 Mg C ha⁻¹), while continuously cropped fields 
showed lowest values (65-95 Mg C ha⁻¹). Topographic 
depressions accumulated 30-40% more carbon than upslope 
positions. 

 
 

 
0 

Fig 1: Spatial distribution of predicted SOC stocks (0-100 cm) with uncertainty bounds 
 

Carbon Sequestration Potential 
Analysis identified 1,344 km² (42% of study area) with high 
sequestration potential exceeding 20 Mg C ha⁻¹ additional 
storage capacity. Degraded croplands showed greatest 

potential, with possible increases of 35-45 Mg C ha⁻¹ through 
management optimization. Table 2 summarizes sequestration 
potential by land use and management scenario. 
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Table 2: Carbon sequestration potential under different management scenarios over 20 years 
 

Current Land Use Area 
(km²) 

Current SOC (Mg 
C ha⁻¹) Management Scenario Potential Gain 

(Mg C ha⁻¹) 
Total Sequestration 

(Tg C) 
Conventional Cropland 980 78 ± 12 No-till + Cover Crops 28 ± 5 0.274 

Degraded Grassland 420 95 ± 15 Restoration + Grazing Mgmt 35 ± 7 0.147 
Marginal Cropland 350 72 ± 10 Grassland Conversion 45 ± 8 0.158 

Conservation Tillage 560 102 ± 13 Cover Crops + Diverse Rotation 18 ± 4 0.101 
Pasture 280 115 ± 18 Silvopasture 22 ± 6 0.062 

Total High Potential 1,344 88 ± 14 Optimized Management 31 ± 8 0.416 
 

Feature Importance Analysis 
The attention mechanism revealed key predictors of SOC 
stocks. Vegetation indices (particularly NDVI temporal 
statistics) contributed 24% of predictive power, followed by 

clay content (18%), mean annual precipitation (15%), and 
topographic wetness index (12%). Figure 2 illustrates the 
hierarchical importance of predictor categories. 

 

 
 

Fig 2: Hierarchical feature importance for SOC prediction from attention weights 
 

Uncertainty Analysis 
Spatial uncertainty patterns revealed higher confidence in 
agricultural areas with dense sampling (CV < 10%) compared 
to remote grasslands (CV = 15-25%). The ensemble approach 
reduced prediction uncertainty by 35% compared to single 
models. Areas requiring additional sampling for carbon credit 
verification were identified based on high uncertainty 
coinciding with high sequestration potential. 
 
Temporal Dynamics 
Analysis of historical Landsat data revealed SOC changes 
over 38 years. Agricultural intensification caused average 

losses of 0.3 Mg C ha⁻¹ yr⁻¹ in converted grasslands, while 
conservation practice adoption showed gains of 0.2 Mg C 
ha⁻¹ yr⁻¹ after 2005. These trends validated modeled 
sequestration rates and highlighted management impacts. 
 
Discussion 
The exceptional performance of the deep learning model (R² 
= 0.94) represents a significant advance in SOC prediction 
accuracy compared to previous studies reporting R² values of 
0.60-0.85 [16]. The MIFN architecture's success stems from 
effective integration of spatial, spectral, and temporal 
information through specialized processing streams. The 
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attention mechanism proved particularly valuable, 
automatically identifying relevant features while providing 
interpretability often lacking in deep learning applications [19]. 
The 3D CNN component successfully extracted spatial 
patterns from satellite imagery, capturing field-scale 
management effects invisible to traditional pixel-based 
approaches [3]. Incorporating multi-temporal data enabled 
detection of subtle SOC changes related to crop rotation and 
tillage practices. The hyperspectral data, despite limited 
coverage, significantly improved predictions in sampled 
areas through detailed spectral characterization of soil 
organic matter [6]. 
Spatial patterns of SOC stocks aligned with established 
pedological understanding while revealing previously 
unrecognized hotspots [11]. The 30-40% higher carbon storage 
in topographic depressions reflects water and sediment 
accumulation processes concentrating organic matter [5]. 
Lower SOC in continuously cropped fields (65-95 Mg C ha⁻¹) 
compared to native grasslands (145-185 Mg C ha⁻¹) 
quantifies the carbon debt from agricultural conversion [18]. 
The identification of 1,344 km² with high sequestration 
potential provides crucial guidance for carbon farming 
initiatives [4]. Degraded croplands showing potential gains of 
35-45 Mg C ha⁻¹ represent "low-hanging fruit" for carbon 
sequestration, where soil carbon far below capacity can be 
rapidly restored [10]. The projected sequestration of 2.3 Tg C 
over 20 years, while representing only 0.7% of annual 
regional emissions, demonstrates significant potential when 
scaled to larger areas [20]. 
Feature importance analysis validated known SOC controls 
while revealing unexpected predictors [14]. The dominance of 
vegetation indices reflects plant productivity's role in carbon 
inputs, while clay content importance confirms mineral 
protection mechanisms [7]. The high importance of 
precipitation (15%) in this water-limited system emphasizes 
climate constraints on sequestration potential [13]. 
Surprisingly, management history variables showed lower 
direct importance (8%), suggesting their effects are captured 
indirectly through vegetation and soil property changes [2]. 
Several limitations warrant consideration. First, the model's 
performance may degrade when applied to different soil 
types or climate regions without retraining [8]. Second, the 10-
30m resolution of most input data cannot capture fine-scale 
management variations important for precision agriculture 

[15]. Third, the carbon sequestration projections assume 
optimal management implementation, which faces practical 
constraints including economic feasibility and farmer 
adoption [12]. 
The framework's operational implementation offers 
immediate applications for carbon credit programs [17]. High-
resolution SOC maps enable baseline establishment for 
carbon offset projects, while uncertainty quantification 
supports risk assessment for buyers and sellers. The 
identification of high-potential areas allows targeted 
enrollment in payment for ecosystem service programs, 
maximizing carbon gains per invested dollar [9]. 
Future research should explore transfer learning approaches 
enabling model application across diverse regions with 
minimal retraining [1]. Integration of emerging data sources, 
including drone-based hyperspectral imaging and proximal 
soil sensors, could further improve prediction accuracy [12]. 
Development of near real-time monitoring systems using 
satellite data could track carbon changes for adaptive 
management and credit verification [16]. 

Conclusion 
This study successfully demonstrated the transformative 
potential of artificial intelligence for predicting soil carbon 
stocks and identifying sequestration opportunities at 
landscape scales. Key findings include: 
1. The novel Multi-Input Fusion Network achieved 

unprecedented accuracy (R² = 0.94, RMSE = 8.7 Mg C 
ha⁻¹) for SOC stock prediction by effectively integrating 
spatial, spectral, and temporal data through specialized 
deep learning architectures. 

2. Spatial mapping revealed pronounced SOC patterns, 
with native grasslands storing 145-185 Mg C ha⁻¹ 
compared to 65-95 Mg C ha⁻¹ in intensively cropped 
fields, quantifying the carbon debt from land use change. 

3. Analysis identified 1,344 km² (42% of study area) with 
high sequestration potential exceeding 20 Mg C ha⁻¹, 
primarily in degraded croplands where optimized 
management could restore soil carbon toward natural 
capacity. 

4. Scenario modeling projected total sequestration potential 
of 2.3 Tg C over 20 years through adoption of no-till, 
cover crops, grassland restoration, and other practices, 
providing spatially explicit guidance for climate 
mitigation efforts. 

5. The attention mechanism revealed vegetation indices, 
clay content, and precipitation as key predictors while 
maintaining model interpretability crucial for 
stakeholder acceptance and scientific understanding. 
 

The developed AI framework offers immediate operational 
applications for carbon farming initiatives, providing high-
resolution baseline assessment, sequestration potential 
mapping, and uncertainty quantification essential for carbon 
credit verification. As climate mitigation urgency intensifies, 
such AI-driven tools become indispensable for scaling 
natural climate solutions. The integration of advancing sensor 
technologies and AI architectures promises continued 
improvements in soil carbon monitoring, supporting 
evidence-based policies and management practices for 
climate stability and soil health. 
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