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Article Info Abstract
Soil carbon sequestration represents a critical nature-based solution for climate
P-ISSN: 3051-3448 change mitigation, yet accurate quantification of carbon stocks and sequestration
E-ISSN: 3051-3456 potential remains challenging across landscape scales. This study developed an
: artificial intelligence framework integrating deep learning algorithms with multi-
Volume: 04 source environmental data to predict soil organic carbon (SOC) stocks and identify
Issue: 02 areas with high sequestration potential. We analyzed 1,850 soil profiles across a
July - December 2023 3,200 km? agricultural region, combining spectral data from Sentinel-2 and
. . hyperspectral sensors, climate variables, topographic attributes, land management
Received: 13-07-2023 history, and soil physicochemical properties. A novel deep neural network
Accepted: 20-08-2023 architecture incorporating attention mechanisms achieved R? = 0.94 for SOC stock
Published: 03-09-2023 prediction (0-100 cm depth) with RMSE of 8.7 Mg C ha™'. The Al model identified
Page No: 61-66 42% of the study area with high sequestration potential (>20 Mg C ha™! additional

storage capacity), primarily in degraded croplands and grasslands. Scenario
modeling revealed that optimized management practices could sequester 2.3 Tg C
over 20 years, equivalent to 8.4 Tg CO: removal. Feature importance analysis
highlighted vegetation indices, clay content, and precipitation as key predictors.
The framework provides spatially explicit guidance for carbon farming initiatives,
supporting evidence-based policy development and verification of carbon credits.
This research demonstrates Al's transformative potential for scaling soil carbon
assessment and optimizing climate mitigation strategies.
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Introduction

Soils represent the largest terrestrial carbon reservoir, containing approximately 2,500 Pg C in the top 2 meters, exceeding
atmospheric and vegetation carbon combined ['¥1. The potential for enhanced soil carbon sequestration through improved land
management offers a scalable climate mitigation strategy, with estimates suggesting 2-5 Pg C yr! sequestration potential
globally . However, realizing this potential requires accurate baseline assessment of current carbon stocks and identification
of areas with high sequestration capacity ['!],

Traditional soil carbon assessment methods face significant limitations in spatial coverage and temporal resolution. Laboratory
analysis of soil samples, while accurate, proves prohibitively expensive for landscape-scale monitoring, with costs exceeding
$50 per sample [°]. The high spatial variability of SOC, influenced by complex interactions among climate, vegetation,
topography, and management practices, necessitates dense sampling that is economically unfeasible [!. Furthermore, static
sampling cannot capture carbon dynamics essential for verifying sequestration claims in emerging carbon markets 2%,

Recent advances in artificial intelligence, particularly deep learning, offer transformative capabilities for environmental
monitoring and prediction ). AT algorithms excel at identifying complex, non-linear patterns in high-dimensional data, making
them ideally suited for integrating diverse environmental datasets relevant to soil carbon dynamics 4. Convolutional neural
networks (CNNs) can extract spatial features from satellite imagery, while recurrent neural networks (RNNs) capture temporal

dynamics in time series data]. The integration of attention mechanisms further enhances model interpretability and performance
[19]
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Remote sensing technologies provide unprecedented data
availability for Al-driven soil carbon assessment.
Multispectral and hyperspectral sensors capture spectral
signatures correlating with soil organic matter content [,
Synthetic aperture radar penetrates vegetation canopies,
providing information about soil moisture and structure ['21.
When combined with ancillary data on climate, topography,
and land use history, these datasets enable comprehensive
characterization of factors controlling soil carbon storage 6,
Despite growing interest in Al applications for soil science,
several challenges remain. Model transferability across
different ecosystems and management systems requires
careful consideration ?1. The "black box" nature of deep
learning models raises concerns about interpretability for
stakeholder acceptance . Additionally, quantifying
uncertainty in Al predictions is crucial for risk assessment in
carbon credit verification ['”,

This study addresses these challenges by developing a
comprehensive Al framework that: (1) integrates state-of-
the-art deep learning architectures with multi-source
environmental data, (2) predicts current SOC stocks at high
spatial resolution with uncertainty quantification, (3)
identifies areas with high carbon sequestration potential
based on biophysical capacity and management scenarios,
and (4) provides interpretable results supporting policy and
management decisions. The objective is to demonstrate
operational Al applications for soil carbon assessment
supporting climate mitigation efforts.

Materials and Methods

Study Area and Soil Sampling

The study encompassed 3,200 km? of agricultural landscapes

in the North American Great Plains (46°30'N-48°00'N,

97°00'W-99°00'W), characterized by diverse -cropping

systems, grasslands, and conservation practices. This region

experiences continental climate (mean annual temperature:

6.8°C, precipitation: 450-650 mm) with Mollisols and

Vertisols dominating soil types [°!.

Soil sampling followed a stratified random design based on

land use, soil type, and topographic position. We collected

1,850 soil profiles during 2019-2023, with samples at depths

of 0-10, 10-30, 30-60, and 60-100 cm. Laboratory analyses

included:

e SOC concentration: dry combustion method (LECO
analyzer)

e  Bulk density: core method

e  Texture: laser diffraction particle size analysis

e pH, CEC, and base saturation: standard methods
SOC stocks (Mg C ha™') were calculated accounting for
bulk density and coarse fragments.

[13]

Environmental Covariates

We assembled 67 environmental covariates representing soil-

forming factors:

Remote sensing data:

e Sentinel-2: Monthly cloud-free composites (2019-2023)
at 10m resolution

e Hyperspectral imagery: AVIRIS-NG flight lines
covering 30% of study area (420-2450 nm, 5nm
bandwidth)

e Sentinel-1 SAR: VV and VH backscatter coefficients
Historical Landsat archive: Land use change detection
(1985-2023)
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Climate variables: Temperature and precipitation: 30-year
normals and monthly anomalies

Potential evapotranspiration, aridity index

Growing degree days, frost-free period

Topographic attributes: LiDAR-derived DEM (Im
resolution): elevation, slope, aspect, curvature

Hydrological indices: TWI, flow accumulation, distance to
streams

Landscape position classification

Management data: Crop rotation history from farm records
and satellite classification

Tillage practices, cover crop adoption

Fertilizer and amendment applications

Grazing intensity for grasslands

Deep Learning Architecture

We developed a novel Multi-Input Fusion Network (MIFN)
combining:

Spatial feature extraction: 3D CNN processing multi-
temporal satellite imagery

Input: 64x64x12xT tensor (spatial x spatial x bands x time)
Architecture: 4 convolutional blocks with residual
connections

Feature maps: 32, 64, 128, 256 channels

Tabular data processing: Deep neural network for non-
spatial covariates

Input: 45 normalized features

Architecture: 5 fully connected layers (512, 256, 128, 64, 32
neurons)

Activation: ReLU with batch normalization

Attention mechanism: Self-attention module weighting
feature importance

Multi-head attention (8 heads) applied to concatenated
features

Positional encoding for spatial context

Output layers

SOC prediction: Single neuron with linear activation
Uncertainty estimation: Mixture density network outputting
mean and variance

Model Training and Validation

The dataset was split using spatial blocking: 60% training,

20% validation, 20% testing. We implemented:

e Data augmentation: Random cropping, rotation, and
spectral perturbation

e Loss function: Custom loss combining MSE and
negative log-likelihood for uncertainty

e Optimization: Adam optimizer with learning rate
scheduling (initial: 0.001).

e Regularization: Dropout (0.3), L2 penalty (0.0001),
early stopping Hyperparameter tuning employed
Bayesian optimization over 100 iterations.

Sequestration Potential Assessment

Carbon sequestration potential integrated three components:
Biophysical capacity: Maximum SOC storage based on
climate, soil texture, and mineralogy using boundary line
analysis 1%,
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2. Management scenarios: Simulated SOC changes
under:

No-till adoption

Cover crop integration

Optimized crop rotations

Grassland restoration

Agroforestry implementation

Constraint analysis: Accounting for economic feasibility,
water availability, and existing land use

The RothC model, parameterized with local data, projected
20-year carbon dynamics under each scenario [,

Uncertainty Quantification
We implemented ensemble uncertainty estimation:
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e  Monte Carlo dropout: 100 forward passes with dropout
active

e Bootstrap aggregation: 50 models trained on resampled
data

e  Gaussian process regression for spatial uncertainty

Combined uncertainty maps identified areas requiring

additional sampling.

Results

Model Performance

The MIFN architecture achieved exceptional prediction
accuracy for SOC stocks across all depth intervals. Overall
performance for 0-100 cm SOC stocks showed R? = 0.94,
RMSE = 8.7 Mg C ha, and MAE = 6.2 Mg C ha™..
Performance varied by depth, with surface layers showing
highest accuracy (Table 1).

Table 1: Model performance metrics for SOC stock prediction by depth interval

Depth (cm) R? RMSE (Mg C ha™) MAE (Mg C ha™) Bias (%) | CCC
0-10 0.95 2.8 2.1 -0.8 0.97
10-30 0.93 3.4 2.6 -1.2 0.96
30-60 0.91 4.2 3.3 0.5 0.94

60-100 0.88 5.1 4.0 1.3 0.91

0-100 (total) |0.94 8.7 6.2 -0.3 0.96

Comparison with traditional machine learning approaches
demonstrated the superiority of deep learning. Random
Forest achieved R? = 0.82, while support vector regression
reached R? = 0.79 for total SOC stocks.

Spatial Distribution of SOC Stocks

Fig 1: Spatial distribution of predicted SOC stocks (0-100 cm) with uncertainty bounds

Carbon Sequestration Potential

Analysis identified 1,344 km? (42% of study area) with high
sequestration potential exceeding 20 Mg C ha™ additional
storage capacity. Degraded croplands showed greatest

The predicted SOC map revealed pronounced spatial patterns
correlating with land use history and topographic position
(Figure 1). Native grasslands contained highest SOC stocks
(145-185 Mg C ha™), while continuously cropped fields
showed lowest values (65-95 Mg C ha™). Topographic
depressions accumulated 30-40% more carbon than upslope
positions.

SOC Stock (Mg C ha-?)
mm 60-100
e 100-130
[ 130-160
Hm 160-190
. >190

potential, with possible increases of 35-45 Mg C ha™' through
management optimization. Table 2 summarizes sequestration
potential by land use and management scenario.
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Table 2: Carbon sequestration potential under different management scenarios over 20 years

Current Land Use (il;?) CurreélthSa(z)C Mg Management Scenario P?;:Igltg lhac_?)m Total S(equuEs)tratlon
Conventional Cropland 980 78 £12 No-till + Cover Crops 28+5 0.274
Degraded Grassland 420 95+ 15 Restoration + Grazing Mgmt 35+7 0.147
Marginal Cropland 350 72+ 10 Grassland Conversion 45+8 0.158
Conservation Tillage 560 102+ 13 Cover Crops + Diverse Rotation 18+4 0.101
Pasture 280 115+£18 Silvopasture 22+6 0.062
Total High Potential 1,344 88+ 14 Optimized Management 31+8 0.416

Feature Importance Analysis

The attention mechanism revealed key predictors of SOC
stocks. Vegetation indices (particularly NDVI temporal
statistics) contributed 24% of predictive power, followed by

clay content (18%), mean annual precipitation (15%), and
topographic wetness index (12%). Figure 2 illustrates the
hierarchical importance of predictor categories.

(5
%
d)d»
3
%

4'90

23

o

gf
>

Reg
“Sdge
/0\ " dic@s
J

x5
&
NV
wo

Elevation

slo'oe

)36

aanjesaduwal

Fig 2: Hierarchical feature importance for SOC prediction from attention weights

Uncertainty Analysis

Spatial uncertainty patterns revealed higher confidence in
agricultural areas with dense sampling (CV < 10%) compared
to remote grasslands (CV = 15-25%). The ensemble approach
reduced prediction uncertainty by 35% compared to single
models. Areas requiring additional sampling for carbon credit
verification were identified based on high uncertainty
coinciding with high sequestration potential.

Temporal Dynamics
Analysis of historical Landsat data revealed SOC changes
over 38 years. Agricultural intensification caused average

losses of 0.3 Mg C ha! yr! in converted grasslands, while
conservation practice adoption showed gains of 0.2 Mg C
ha™ yr' after 2005. These trends validated modeled
sequestration rates and highlighted management impacts.

Discussion

The exceptional performance of the deep learning model (R?
= 0.94) represents a significant advance in SOC prediction
accuracy compared to previous studies reporting R? values of
0.60-0.85 181, The MIFN architecture's success stems from
effective integration of spatial, spectral, and temporal
information through specialized processing streams. The
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attention mechanism proved particularly valuable,
automatically identifying relevant features while providing
interpretability often lacking in deep learning applications ',
The 3D CNN component successfully extracted spatial
patterns from satellite imagery, capturing field-scale
management effects invisible to traditional pixel-based
approaches 1. Incorporating multi-temporal data enabled
detection of subtle SOC changes related to crop rotation and
tillage practices. The hyperspectral data, despite limited
coverage, significantly improved predictions in sampled
areas through detailed spectral characterization of soil
organic matter [°],

Spatial patterns of SOC stocks aligned with established
pedological understanding while revealing previously
unrecognized hotspots '), The 30-40% higher carbon storage
in topographic depressions reflects water and sediment
accumulation processes concentrating organic matter D,
Lower SOC in continuously cropped fields (65-95 Mg C ha™")
compared to native grasslands (145-185 Mg C ha)
quantifies the carbon debt from agricultural conversion 8,
The identification of 1,344 km? with high sequestration
potential provides crucial guidance for carbon farming
initiatives [*. Degraded croplands showing potential gains of
35-45 Mg C ha™' represent "low-hanging fruit" for carbon
sequestration, where soil carbon far below capacity can be
rapidly restored ['!. The projected sequestration of 2.3 Tg C
over 20 years, while representing only 0.7% of annual
regional emissions, demonstrates significant potential when
scaled to larger areas 2],

Feature importance analysis validated known SOC controls
while revealing unexpected predictors [, The dominance of
vegetation indices reflects plant productivity's role in carbon
inputs, while clay content importance confirms mineral
protection mechanisms "), The high importance of
precipitation (15%) in this water-limited system emphasizes
climate constraints on sequestration potential 3],
Surprisingly, management history variables showed lower
direct importance (8%), suggesting their effects are captured
indirectly through vegetation and soil property changes 2!,
Several limitations warrant consideration. First, the model's
performance may degrade when applied to different soil
types or climate regions without retraining [®1. Second, the 10-
30m resolution of most input data cannot capture fine-scale
management variations important for precision agriculture
(151 Third, the carbon sequestration projections assume
optimal management implementation, which faces practical
constraints including economic feasibility and farmer
adoption [2,

The framework's operational implementation offers
immediate applications for carbon credit programs 7). High-
resolution SOC maps enable baseline establishment for
carbon offset projects, while uncertainty quantification
supports risk assessment for buyers and sellers. The
identification of high-potential areas allows targeted
enrollment in payment for ecosystem service programs,
maximizing carbon gains per invested dollar ).

Future research should explore transfer learning approaches
enabling model application across diverse regions with
minimal retraining ['1. Integration of emerging data sources,
including drone-based hyperspectral imaging and proximal
soil sensors, could further improve prediction accuracy [12],
Development of near real-time monitoring systems using
satellite data could track carbon changes for adaptive
management and credit verification [¢,
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Conclusion

This study successfully demonstrated the transformative

potential of artificial intelligence for predicting soil carbon

stocks and identifying sequestration opportunities at
landscape scales. Key findings include:

1. The novel Multi-Input Fusion Network achieved
unprecedented accuracy (R* = 0.94, RMSE = 8.7 Mg C
ha™*) for SOC stock prediction by effectively integrating
spatial, spectral, and temporal data through specialized
deep learning architectures.

2. Spatial mapping revealed pronounced SOC patterns,
with native grasslands storing 145-185 Mg C ha!
compared to 65-95 Mg C ha™! in intensively cropped
fields, quantifying the carbon debt from land use change.

3. Analysis identified 1,344 km? (42% of study area) with
high sequestration potential exceeding 20 Mg C ha™!,
primarily in degraded croplands where optimized
management could restore soil carbon toward natural
capacity.

4. Scenario modeling projected total sequestration potential
of 2.3 Tg C over 20 years through adoption of no-till,
cover crops, grassland restoration, and other practices,
providing spatially explicit guidance for climate
mitigation efforts.

5. The attention mechanism revealed vegetation indices,
clay content, and precipitation as key predictors while
maintaining model interpretability crucial for
stakeholder acceptance and scientific understanding.

The developed Al framework offers immediate operational
applications for carbon farming initiatives, providing high-
resolution baseline assessment, sequestration potential
mapping, and uncertainty quantification essential for carbon
credit verification. As climate mitigation urgency intensifies,
such Al-driven tools become indispensable for scaling
natural climate solutions. The integration of advancing sensor
technologies and AI architectures promises continued
improvements in soil carbon monitoring, supporting
evidence-based policies and management practices for
climate stability and soil health.
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