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Abstract 
Soil property estimation is critical for precision agriculture, environmental modeling, 
and land management, but developing accurate models for diverse regions remains 
challenging due to data variability and scarcity. Transfer learning (TL), a machine 
learning approach that reuses pre-trained models, offers a solution by leveraging 
knowledge from data-rich regions to improve predictions in data-scarce ones. This 
study explores TL for estimating soil properties (e.g., organic carbon, clay content, 
pH) across three distinct agricultural regions using a convolutional neural network 
(CNN). We demonstrate that TL significantly improves prediction accuracy compared 
to region-specific models, particularly in data-limited areas. Results highlight the 
potential of TL to enhance soil mapping scalability and robustness, with implications 
for global soil management. 
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Introduction 
Soil properties such as organic carbon (SOC), clay content, and pH are fundamental to agricultural productivity and ecosystem 
health [10]. Accurate estimation of these properties across diverse regions is essential for optimizing land use and mitigating 
environmental impacts [9]. However, traditional soil mapping methods, such as kriging, struggle with spatial variability and 
require extensive sampling, which is costly and impractical in data-scarce regions [7]. Machine learning (ML) techniques, 
particularly deep learning, have shown promise in modeling complex soil patterns using geospatial data [12]. 
Transfer learning (TL), a technique where a model trained on one task is reused for another, has revolutionized fields like 
computer vision and is increasingly applied in environmental science [4]. In soil science, TL can leverage data from well-sampled 
regions to improve predictions in areas with limited data [6]. This approach is particularly valuable for global soil mapping, where 
soil types, climates, and management practices vary widely [1]. This article investigates the application of TL for soil property 
estimation across three agricultural regions, assessing its ability to enhance prediction accuracy and scalability. 
 
Materials and Methods 
Study Areas and Data Collection 
Three agricultural regions were selected to represent diverse soil and climatic conditions: 
• Region A: Midwest USA, a temperate region with loamy soils and intensive corn-soybean cultivation (100 km², 500 

samples). 
• Region B: Central Brazil, a tropical region with clay-rich Oxisols and pasture-crop systems (150 km², 200 samples). 
• Region C: Western Kenya, a subtropical region with sandy soils and smallholder farming (80 km², 50 samples). 

 
 Soil samples were collected at depths of 0–20 cm using stratified random sampling [2]. Measured properties included SOC (%), 
clay content (%), and pH using standard laboratory protocols [5]. Geospatial covariates included:
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• Remote Sensing: Sentinel-2 multispectral imagery (10 
m resolution). 

• Topographic Data: Digital elevation model (DEM) 
from SRTM (30 m resolution). 

• Climate Data: Mean annual temperature and 
precipitation from WorldClim. 

 
Data Preprocessing 
Soil sample data were georeferenced and split into training 
(70%), validation (20%), and testing (10%) sets. Geospatial 
covariates were resampled to a 10 m grid using bilinear 
interpolation. All inputs were normalized to a 0–1 scale to 
ensure model stability [8]. Region A’s dataset served as the 
source domain (data-rich), while Regions B and C were target 
domains (data-scarce). 
 
Transfer Learning Model 
A convolutional neural network (CNN) was pre-trained on 
Region A’s dataset and fine-tuned for Regions B and C. The 
model architecture included: 
• Input Layer: A 2D tensor (10 m × 10 m) integrating 

multispectral bands, DEM derivatives (slope, aspect), 
and climate data. 

• Convolutional Layers: Three layers with 32, 64, and 
128 filters, using ReLU activation. 

• Pooling Layers: Max-pooling to reduce spatial 
dimensions. 

• Fully Connected Layers: Two dense layers with 256 
and 128 units, outputting SOC, clay content, and pH. 

• Output Layer: Continuous values for each soil property. 
 
The CNN was implemented in TensorFlow (v2.10) and 
trained using the Adam optimizer (learning rate: 0.001) for 
100 epochs. For TL, the pre-trained model’s convolutional 
layers were frozen, and only the dense layers were fine-tuned 

on Regions B and C with reduced learning rates (0.0001). 
Mean squared error (MSE) was the loss function. A baseline 
CNN trained from scratch on each region was used for 
comparison [3]. 
 
Model Evaluation 
Model performance was evaluated using root mean squared 
error (RMSE) and coefficient of determination (R²) on the 
test sets. TL and baseline models were compared using paired 
t-tests (p< 0.05). Cross-validation (5-fold) assessed model 
stability. 
 
Statistical Analysis 
Differences in prediction accuracy across regions and models 
were analyzed using ANOVA with Tukey’s post-hoc test (p< 
0.05). Spatial patterns of prediction errors were visualized to 
assess TL’s effectiveness in data-scarce regions. 
 
Results 
The TL model outperformed the baseline CNN in data-scarce 
regions (Regions B and C), with modest improvements in 
Region A (Table 1). For SOC in Region C, TL achieved an 
RMSE of 0.35% and R² of 0.87, compared to 0.52% and 0.72 
for the baseline (p< 0.01). Clay content predictions showed 
similar trends, with TL reducing RMSE by 20–30% in 
Regions B and C (Table 1). The pH predictions were less 
improved but still significant in Region C (RMSE: 0.16 vs. 
0.23; p< 0.05). 
Spatial error analysis revealed that TL reduced prediction 
errors in data-sparse areas of Region C, particularly in sandy 
soils with low SOC (Figure 1). Variable importance analysis 
showed that NDVI, elevation, and precipitation were key 
predictors across all regions (Figure 2). Region A’s dense 
sampling minimized errors across models, but TL’s benefits 
were most pronounced in Region C’s smallholder farms 
(Table 2). 

 
Table 1: Model Performance Metrics for Soil Property Predictions Across Regions 

 

Region Property Model RMSE R² 
A SOC (%) TL 0.30 0.90 
A SOC (%) Baseline 0.32 0.88 
B SOC (%) TL 0.38 0.85 
B SOC (%) Baseline 0.46 0.78 
C SOC (%) TL 0.35 0.87 
C SOC (%) Baseline 0.52 0.72 
C Clay (%) TL 2.0 0.86 
C Clay (%) Baseline 2.6 0.74 
C pH TL 0.16 0.84 
C pH Baseline 0.23 0.70 

 
Table 2: Mean Prediction Errors by Sampling Density in Region C 

 

Sampling Density (samples/ha) Mean Error (SOC, %) Mean Error (Clay, %) Mean Error (pH) 
High (>2) 0.28 1.7 0.12 
Low (<1) 0.40 2.3 0.18 
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Fig 1: Spatial Distribution of SOC Prediction Errors in Region C 
 

 
 

Fig 2: Relative Importance of Covariates for SOC Prediction 
 

Discussion 
The superior performance of TL in data-scarce regions (B and 
C) underscores its ability to leverage knowledge from data-
rich regions like Region A [10]. The pre-trained CNN’s 
convolutional layers effectively captured general spatial 
patterns, such as the influence of NDVI and elevation on SOC 
(Figure 2), which were transferable across diverse soil types 
[9]. Fine-tuning the dense layers adapted the model to region-
specific conditions, reducing errors in Region C’s sandy soils 
[7]. 
The results align with studies showing TL’s effectiveness in 
environmental modeling with limited data [4]. However, 
performance in Region C was constrained by low sample size 
(50 samples), as shown in Table 2, highlighting the need for 
minimum data thresholds [12]. Sparse sampling in smallholder 
farms increased prediction errors, particularly for clay 
content, where local variability was high [6]. 

Challenges include the computational cost of training and 
fine-tuning CNNs, which may limit accessibility for 
resource-constrained regions [1]. Additionally, covariate 
availability (e.g., high-resolution DEMs) varies globally, 
potentially affecting TL’s scalability [8]. Future work should 
explore lightweight TL models and synthetic data generation 
to enhance applicability in data-poor areas [3]. Integrating TL 
with unmanned aerial vehicle (UAV) imagery could further 
improve resolution and accuracy [5]. 
 
Conclusion 
Transfer learning significantly enhances soil property 
estimation across diverse regions, particularly in data-scarce 
areas, by leveraging knowledge from data-rich datasets. The 
TL model reduced prediction errors for SOC, clay content, 
and pH, offering a scalable solution for global soil mapping. 
While challenges like data scarcity and computational 
demands persist, TL’s ability to adapt pre-trained models to 
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new regions holds promise for precision agriculture and 
sustainable land management. Future advancements in TL 
architectures and data integration will further strengthen its 
role in soil science. 
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