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Article Info Abstract

Soil property estimation is critical for precision agriculture, environmental modeling,
P-ISSN: 3051-3448 and land management, but developing accurate models for diverse regions remains
. ) challenging due to data variability and scarcity. Transfer learning (TL), a machine
E-IISSN' 3)351 3456 learning approach that reuses pre-trained models, offers a solution by leveraging
olume: knowledge from data-rich regions to improve predictions in data-scarce ones. This
Issue: 02 study explores TL for estimating soil properties (e.g., organic carbon, clay content,
July - December 2023 pH) across three distinct agricultural regions using a convolutional neural network
. . (CNN). We demonstrate that TL significantly improves prediction accuracy compared
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Introduction

Soil properties such as organic carbon (SOC), clay content, and pH are fundamental to agricultural productivity and ecosystem
health [1%). Accurate estimation of these properties across diverse regions is essential for optimizing land use and mitigating
environmental impacts ). However, traditional soil mapping methods, such as kriging, struggle with spatial variability and
require extensive sampling, which is costly and impractical in data-scarce regions [, Machine learning (ML) techniques,
particularly deep learning, have shown promise in modeling complex soil patterns using geospatial data ['2!,

Transfer learning (TL), a technique where a model trained on one task is reused for another, has revolutionized fields like
computer vision and is increasingly applied in environmental science [*l. In soil science, TL can leverage data from well-sampled
regions to improve predictions in areas with limited data [®!. This approach is particularly valuable for global soil mapping, where
soil types, climates, and management practices vary widely ['l. This article investigates the application of TL for soil property
estimation across three agricultural regions, assessing its ability to enhance prediction accuracy and scalability.

Materials and Methods

Study Areas and Data Collection

Three agricultural regions were selected to represent diverse soil and climatic conditions:

e Region A: Midwest USA, a temperate region with loamy soils and intensive corn-soybean cultivation (100 km?2, 500
samples).

e Region B: Central Brazil, a tropical region with clay-rich Oxisols and pasture-crop systems (150 km?, 200 samples).

e Region C: Western Kenya, a subtropical region with sandy soils and smallholder farming (80 km?, 50 samples).

Soil samples were collected at depths of 0—20 cm using stratified random sampling 1. Measured properties included SOC (%),
clay content (%), and pH using standard laboratory protocols [*l. Geospatial covariates included:
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e Remote Sensing: Sentinel-2 multispectral imagery (10
m resolution).

e Topographic Data: Digital elevation model (DEM)
from SRTM (30 m resolution).

Data:

precipitation from WorldClim.

e Climate Mean annual temperature and

Data Preprocessing

Soil sample data were georeferenced and split into training
(70%), validation (20%), and testing (10%) sets. Geospatial
covariates were resampled to a 10 m grid using bilinear
interpolation. All inputs were normalized to a 0—1 scale to
ensure model stability ¥, Region A’s dataset served as the
source domain (data-rich), while Regions B and C were target
domains (data-scarce).

Transfer Learning Model

A convolutional neural network (CNN) was pre-trained on

Region A’s dataset and fine-tuned for Regions B and C. The

model architecture included:

e Input Layer: A 2D tensor (10 m x 10 m) integrating
multispectral bands, DEM derivatives (slope, aspect),
and climate data.

e Convolutional Layers: Three layers with 32, 64, and
128 filters, using ReLU activation.

e Pooling Layers: Max-pooling to reduce spatial
dimensions.

o Fully Connected Layers: Two dense layers with 256
and 128 units, outputting SOC, clay content, and pH.

e Output Layer: Continuous values for each soil property.

The CNN was implemented in TensorFlow (v2.10) and
trained using the Adam optimizer (learning rate: 0.001) for
100 epochs. For TL, the pre-trained model’s convolutional
layers were frozen, and only the dense layers were fine-tuned
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on Regions B and C with reduced learning rates (0.0001).
Mean squared error (MSE) was the loss function. A baseline
CNN trained from scratch on each region was used for
comparison B,

Model Evaluation

Model performance was evaluated using root mean squared
error (RMSE) and coefficient of determination (R?) on the
test sets. TL and baseline models were compared using paired
t-tests (p< 0.05). Cross-validation (5-fold) assessed model
stability.

Statistical Analysis

Differences in prediction accuracy across regions and models
were analyzed using ANOVA with Tukey’s post-hoc test (p<
0.05). Spatial patterns of prediction errors were visualized to
assess TL’s effectiveness in data-scarce regions.

Results

The TL model outperformed the baseline CNN in data-scarce
regions (Regions B and C), with modest improvements in
Region A (Table 1). For SOC in Region C, TL achieved an
RMSE 0f 0.35% and R? of 0.87, compared to 0.52% and 0.72
for the baseline (p< 0.01). Clay content predictions showed
similar trends, with TL reducing RMSE by 20-30% in
Regions B and C (Table 1). The pH predictions were less
improved but still significant in Region C (RMSE: 0.16 vs.
0.23; p< 0.05).

Spatial error analysis revealed that TL reduced prediction
errors in data-sparse areas of Region C, particularly in sandy
soils with low SOC (Figure 1). Variable importance analysis
showed that NDVI, elevation, and precipitation were key
predictors across all regions (Figure 2). Region A’s dense
sampling minimized errors across models, but TL’s benefits
were most pronounced in Region C’s smallholder farms
(Table 2).

Table 1: Model Performance Metrics for Soil Property Predictions Across Regions

Region Property Model RMSE R?
A SOC (%) TL 0.30 0.90
A SOC (%) Baseline 0.32 0.88
B SOC (%) TL 0.38 0.85
B SOC (%) Baseline 0.46 0.78
C SOC (%) TL 0.35 0.87
C SOC (%) Baseline 0.52 0.72
C Clay (%) TL 2.0 0.86
C Clay (%) Baseline 2.6 0.74
C pH TL 0.16 0.84
C pH Baseline 0.23 0.70

Table 2: Mean Prediction Errors by Sampling Density in Region C

Sampling Density (samples/ha)

Mean Error (SOC, %)

Mean Error (Clay, %) | Mean Error (pH)

High (>2) 0.28

1.7 0.12

Low (<) 0.40

23 0.18
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0.6 Error bars represent standard error (n = 5)
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Fig 1: Spatial Distribution of SOC Prediction Errors in Region C
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Fig 2: Relative Importance of Covariates for SOC Prediction
Discussion Challenges include the computational cost of training and

The superior performance of TL in data-scarce regions (B and
C) underscores its ability to leverage knowledge from data-
rich regions like Region A [ The pre-trained CNN’s
convolutional layers effectively captured general spatial
patterns, such as the influence of NDVI and elevation on SOC
(Figure 2), which were transferable across diverse soil types
1. Fine-tuning the dense layers adapted the model to region-
specific conditions, reducing errors in Region C’s sandy soils
[7]

The results align with studies showing TL’s effectiveness in
environmental modeling with limited data . However,
performance in Region C was constrained by low sample size
(50 samples), as shown in Table 2, highlighting the need for
minimum data thresholds ['?), Sparse sampling in smallholder
farms increased prediction errors, particularly for clay
content, where local variability was high [°],

fine-tuning CNNs, which may limit accessibility for
resource-constrained regions . Additionally, covariate
availability (e.g., high-resolution DEMs) varies globally,
potentially affecting TL’s scalability *). Future work should
explore lightweight TL models and synthetic data generation
to enhance applicability in data-poor areas 1. Integrating TL
with unmanned aerial vehicle (UAV) imagery could further
improve resolution and accuracy P!,

Conclusion

Transfer learning significantly enhances soil property
estimation across diverse regions, particularly in data-scarce
areas, by leveraging knowledge from data-rich datasets. The
TL model reduced prediction errors for SOC, clay content,
and pH, offering a scalable solution for global soil mapping.
While challenges like data scarcity and computational
demands persist, TL’s ability to adapt pre-trained models to
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new regions holds promise for precision agriculture and
sustainable land management. Future advancements in TL
architectures and data integration will further strengthen its
role in soil science.
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