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Introduction

Soil ecosystems provide essential services, such as nutrient cycling, carbon storage, and plant growth support, which are
collectively referred to as soil ecosystem multifunctionality (SEMF) [, These functions are driven by soil microbial
communities, including bacteria, fungi, and archaea, which mediate processes like nitrogen fixation, decomposition, and
pathogen suppression . Microbial diversity is hypothesized to enhance SEMF by increasing functional redundancy and
resilience, enabling soils to maintain productivity under environmental stress 1. However, intensive agricultural practices, such
as monoculture and chemical inputs, often reduce microbial diversity, potentially compromising SEMF 1,

Recent advances in metagenomics have enabled detailed insights into microbial diversity and its functional contributions [,
Studies suggest that diverse microbial communities enhance multiple soil functions simultaneously, but the strength of these
relationships varies by soil type and management €. This article explores the linkage between microbial diversity and SEMF
across three distinct agricultural landscapes, using metagenomic sequencing to quantify microbial diversity and functional gene
abundance, alongside field measurements of soil processes.

Materials and Methods

Study Sites

Three agricultural landscapes were selected to represent diverse soil and management conditions:

e Site A: Organic farm in Wisconsin, USA, with loamy soils and maize-soybean rotation (60 ha).

e Site B: Conventional farm in Punjab, India, with sandy loam soils and rice-wheat rotation (80 ha).
e Site C: Agroforestry system in Western Kenya, with clay-rich soils and mixed cropping (40 ha).
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Each site included plots under high-intensity (chemical
fertilizers, monoculture) and low-intensity (organic or
agroforestry) management, with five replicates per
management type.

Soil Sampling and Measurements

Soil samples (0-20 cm depth) were collected in 2023 using a

stratified random design [l. Soil properties measured

included:

e Organic carbon (SOC, %): Walkley-Black method.

e Total nitrogen (mg/kg): Kjeldahl method.

e Phosphorus (mg/kg): Olsen method.

e Enzyme activity: p-glucosidase (decomposition) and
urease (nitrogen cycling) via fluorometric assays (€1,

Crop yield (t/ha) was recorded for maize (Site A), rice (Site
B), and mixed grains (Site C). SEMF was quantified as a
multifunctionality index (MFI), averaging standardized
values (z-scores) of SOC, nitrogen, phosphorus, enzyme
activities, and yield [,

Metagenomic Sequencing

DNA was extracted using the DNeasy Power Soil Kit
(Qiagen) 19, Metagenomic libraries were prepared with the
IHlumina TruSeq kit and sequenced on an Illumina NovaSeq
6000 (150 bp paired-end, 15 Gb/sample). Reads were filtered
with Trimmomatic (v0.39) [ and assembled using
MEGAHIT (v1.2.9) 12 Functional genes (nifH, amoA,
cellulase) were annotated with Prokka (v1.14) and KEGG 31,
Taxonomic profiles were generated using Kraken2 [24],
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Statistical Analysis

Microbial diversity was quantified using the Shannon index.
Relationships between diversity and SEMF were analyzed
using linear regression and Pearson’s correlation (p < 0.05).
ANOVA with Tukey’s post-hoc test assessed differences in
MFI, gene abundance, and diversity across sites and
management types. Principal coordinate analysis (PCoA)
visualized microbial community structure. Analyses were
conducted in R (v4.3.1) (1%,

Results

Soil properties and SEMF varied significantly across sites,
with Site A (organic) showing the highest MFI (0.85) and Site
B (conventional) the lowest (0.62) (Table 1). Low-intensity
management increased SOC, nitrogen, and enzyme activities
by 10-25% compared to high-intensity plots (p < 0.01) 14,
Crop yields were highest in Site A (maize: 7.8 t/ha, low-
intensity) and lowest in Site C (mixed grains: 3.1 t/ha, high-
intensity) 1.

Microbial diversity (Shannon index) was highest in Site A’s
low-intensity plots (4.2) and lowest in Site B’s high-intensity
plots (3.0) (Table 2) Fl. Regression analysis revealed a
positive correlation between Shannon index and MFI (R? =
0.78, p <0.001) across all sites B, Functional gene abundance
(nifH, cellulase) was significantly higher in low-intensity
plots, with Proteobacteria and Actinobacteria dominating
nitrogen and carbon cycling functions (Figure 1) ™. PCoA
showed distinct microbial community clustering by
management intensity, with low-intensity plots grouping
together across sites (Figure 2) [,

Table 1: Soil Properties and Multifunctionality Index (MFI) by Site and Management

Site| Management | SOC (%) | Nitrogen (mg/kg) | Phosphorus (mg/kg) |MFI| Crop Yield (t/ha)
A | Low-intensity 4.0 120 25 0.85 7.8 (Maize)
A | High-intensity 35 100 20 0.72 6.5 (Maize)
B | Low-intensity 2.8 95 18 0.68 5.0 (Rice)
B | High-intensity 2.3 80 15 0.62 4.2 (Rice)
C | Low-intensity 2.0 65 12 0.75 3.6 (Mixed)
C | High-intensity 15 50 10 0.65 3.1 (Mixed)

Table 2: Microbial Diversity (Shannon Index) by Site and Management
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3.6

3.0
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A 4.2
B 35
C 3.8
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Error bars represent standard error (n = 5)
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Fig 1: Functional Gene Abundance by Management Intensity
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Fig 2: PCoA of Microbial Community Structure

Discussion

The strong positive correlation between microbial diversity
and SEMF (R2z = 0.78) supports the hypothesis that diverse
microbial communities enhance multiple soil functions
simultaneously [, Higher nifH and cellulase gene
abundance in low-intensity plots (Figure 1) indicates that
organic management promotes nitrogen and carbon cycling,
likely due to increased organic inputs [, The dominance of
Proteobacteria and Actinobacteria in these processes aligns
with their known roles in nutrient transformation I,

Site A’s organic system exhibited the highest SEMF, likely
due to its loamy soils and diverse crop rotation, which support
microbial diversity ™. In contrast, Site B’s conventional
system showed reduced diversity and MFI, reflecting the
negative impacts of chemical inputs 1. Site C’s agroforestry
system balanced diversity and function, suggesting a
sustainable model for smallholder systems [l However,
maintaining microbial diversity under intensive agriculture
remains challenging, as chemical inputs disrupt microbial
interactions [7],

Future research should explore microbial engineering
strategies, such as biofertilizers, to enhance diversity in
degraded soils . Long-term studies are needed to assess the
stability of diversity-driven SEMF  improvements,
particularly ~under climate stress [l Integrating
metagenomics with remote sensing could further refine
management practices to optimize SEMF [0’

Conclusion

Microbial diversity is a key driver of soil ecosystem
multifunctionality, enhancing nutrient cycling, carbon
sequestration, and crop productivity. Low-intensity
management systems, such as organic farming and
agroforestry, foster diverse microbial communities that
support higher SEMF. While intensive agriculture poses
challenges, targeted interventions can restore diversity and
function. Advances in metagenomics and sustainable
practices offer a path to resilient soil ecosystems, supporting
global agricultural sustainability.
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