

Microbiome-mediated Nutrient Cycling in Degraded Soils

Peter van Dijk 1*, Dr. Carla Mende 2

- ¹ Department of Environmental Sciences, Wageningen University, Netherlands
- ² Institute of Agronomy, University of Lisbon, Portugal
- * Corresponding Author: Peter van Dijk

Article Info

P - ISSN: 3051-3448 **E - ISSN:** 3051-3456

Volume: 05 Issue: 01

January - June 2024 Received: 20-12-2023 Accepted: 21-01-2024 Published: 20-03-2024

Page No: 13-18

Abstract

Soil degradation disrupts microbial communities and their essential nutrient cycling functions, creating feedback loops that accelerate ecosystem decline. This study investigated microbiome-mediated nutrient cycling processes in degraded soils across a gradient of degradation severity, examining restoration potential through microbial inoculation strategies. We analyzed 180 soil samples from severely degraded (SD), moderately degraded (MD), slightly degraded (LD), and reference undisturbed (REF) sites using metagenomic sequencing, enzyme assays, and nutrient flux measurements. Results revealed that severe degradation reduced microbial diversity by 52% and functional gene abundance by 41%, with disproportionate losses in nitrogen fixation (68% reduction) and phosphorus solubilization (59% reduction) capacities. Network analysis identified critical breakdown in syntrophic interactions, particularly between nitrogen-fixing bacteria and mycorrhizal fungi. Microbial inoculation experiments restored 73% of nitrogen cycling capacity and 81% of phosphorus availability within 6 months, with consortia outperforming single-strain inoculants. Structural equation modeling demonstrated that microbial functional diversity explained 71% of nutrient cycling recovery. Key taxa including Azospirillum, Bacillus, and Penicillium emerged as restoration catalysts. These findings reveal that targeted microbiome manipulation can break degradation-poverty cycles, offering scalable solutions for degraded land restoration and sustainable agriculture in resource-limited environments.

Keywords: Soil Degradation, Nutrient Cycling, Metagenomics, Microbial Inoculation, Restoration Ecology, Functional Genes, Enzyme Activities

Introduction

Soil degradation affects approximately 40% of global agricultural lands, threatening food security and ecosystem sustainability ^[17]. The breakdown of soil structure, loss of organic matter, and depletion of nutrients create hostile environments where traditional agricultural inputs fail to restore productivity ^[8]. Central to this crisis is the disruption of soil microbiomes—the complex communities of bacteria, archaea, fungi, and other microorganisms that drive biogeochemical cycles essential for plant nutrition and soil health ^[14].

Microbiome-mediated nutrient cycling encompasses diverse metabolic processes including nitrogen fixation, nitrification, denitrification, phosphorus solubilization, and organic matter decomposition [3]. These processes depend on intricate microbial networks where metabolic products from one organism serve as substrates for others, creating efficient nutrient recycling systems [19]. In healthy soils, functional redundancy ensures resilience, with multiple taxa capable of performing critical transformations. However, degradation selectively eliminates sensitive species, potentially causing catastrophic losses in ecosystem functions [11]. The mechanisms linking soil degradation to microbial dysfunction operate through multiple pathways. Physical degradation reduces pore connectivity and oxygen availability, limiting aerobic processes [5]. Chemical degradation through acidification or salinization creates physiological stress, narrowing the range of active microorganisms [16]. Biological degradation through organic matter loss eliminates carbon substrates essential for heterotrophic metabolism [2]. These stressors interact synergistically, creating downward spirals where reduced microbial activity further accelerates degradation [9].

Recent advances in metagenomics and metabolomics provide unprecedented insights into microbial community functions and interactions ^[15]. High-throughput sequencing enables quantification of functional genes involved in nutrient cycling, while enzyme assays measure actual metabolic activities ^[7]. Network analysis reveals breakdown in microbial cooperation, identifying keystone species whose loss triggers cascading effects ^[12]. These tools enable mechanistic understanding of degradation impacts and informed design of restoration strategies ^[20].

Microbial inoculation represents a promising approach for restoring nutrient cycling in degraded soils. Unlike chemical fertilizers that provide temporary nutrient pulses, beneficial microorganisms can establish self-sustaining populations that continuously mobilize nutrients from soil reserves [4]. Success depends on selecting organisms adapted to degraded conditions, understanding their interactions, and creating conditions favoring their establishment [18]. However, most inoculation studies focus on single strains in controlled conditions, with limited understanding of community-level dynamics in field settings ^[6].

This study addresses critical knowledge gaps by: (1) quantifying microbiome-mediated nutrient cycling across a degradation gradient, (2) identifying key functional genes and metabolic pathways disrupted by degradation, (3) mapping breakdown in microbial interaction networks, and (4) testing restoration strategies using designed microbial consortia. We hypothesized that degradation severity would correlate with losses in functional diversity, that network disruption would precede functional collapse, and that multispecies inoculation would outperform single strains in restoration.

Materials and Methods Study Sites and Sampling Design

Research was conducted across four categories of sites in semi-arid regions of East Africa (6°15'S-8°30'S, 36°45'E-38°15'E): severely degraded (SD, <2% organic matter, bulk density >1.6 g cm⁻³), moderately degraded (MD, 2-4% organic matter), slightly degraded (LD, 4-6% organic matter), and reference undisturbed sites (REF, >6% organic matter). Each category included 12 sites with similar parent material (granite-derived soils) and climate (550-700 mm annual rainfall) [13].

Sampling occurred during the dry season (July-August 2022) to minimize moisture effects. At each site, we collected 15 samples (0-20 cm depth) in a stratified random pattern, yielding 180 total samples. Fresh soils were immediately placed on ice, with subsamples preserved for different analyses: -80°C for DNA extraction, 4°C for enzyme assays (processed within 48h), and air-dried for physicochemical characterization [10].

Soil Physicochemical and Enzyme Analysis

Standard methods characterized soil properties: texture (hydrometer method), pH (1:2.5 soil water), electrical conductivity, organic carbon (Walkley-Black), total N (Kjeldahl), available P (Bray-1), exchangeable K, Ca, and Mg (ammonium acetate extraction). Soil moisture, bulk density, and aggregate stability were measured following standard protocols [1].

Enzyme activities representing major nutrient cycles included: β -glucosidase and cellulase (C cycle), urease and protease (N cycle), acid and alkaline phosphatase (P cycle),

and arylsulfatase (S cycle). Assays used colorimetric methods with appropriate substrates, expressing activities per gram dry soil per hour [16].

DNA Extraction and Metagenomic Sequencing

Total DNA was extracted from 0.5 g soil using DNeasy Power Soil Pro Kit with modifications for degraded soils (extended lysis, additional purification). DNA quality and quantity were assessed using Nano Drop and Qubit fluorometry. Shotgun metagenomic libraries were prepared using Nextera XT and sequenced on Illumina NovaSeq 6000 (2×150 bp), generating average 10 Gb data per sample [19].

Bioinformatic Analysis

Raw reads underwent quality control using Trimmomatic (Q30, minimum length 100 bp). Host contamination was removed by mapping against plant genomes. Assembly used MEGAHIT with meta-sensitive parameters. Open reading frames were predicted using Prodigal and annotated against KEGG, COG, and CAZy databases using Diamond BLASTX (e-value <1e-5) [15].

Functional gene abundances were normalized to reads per kilobase per million (RPKM). Key nutrient cycling genes analyzed included:

- **Nitrogen**: nifH (fixation), amoA (ammonia oxidation), narG (nitrate reduction), nosZ (N₂O reduction)
- **Phosphorus**: phoD (alkaline phosphatase), pqqC (phosphate solubilization), ppx (polyphosphate hydrolysis)
- **Carbon**: various CAZymes for cellulose, hemicellulose, and lignin degradation
- **Sulfur**: dsrA (sulfate reduction), soxB (sulfur oxidation)

Microbial Network Analysis

Co-occurrence networks were constructed using SparCC correlations ($\rho > |0.6|$, p < 0.01) from genus-level taxonomic profiles. Network properties included connectivity, modularity, and robustness to node removal. Keystone taxa were identified based on high degree centrality and low betweenness centrality [12].

Inoculation Experiments

Restoration potential was tested using: (1) single strains (*Azospirillum brasilense*, *Bacillus megaterium*, *Penicillium bilaiae*), (2) designed consortia combining 5 strains with complementary functions, and (3) indigenous community transplants from reference soils. Greenhouse experiments used degraded soil in 5 kg pots with maize as indicator plants. Inoculants were applied at 10⁸ CFU g⁻¹ soil with carrier material ^[4].

Measurements over 6 months included: soil nutrient availability (KCl-extractable N, Olsen-P), enzyme activities, microbial biomass (chloroform fumigation), plant growth parameters, and nutrient uptake. Field validation plots $(4\times4$ m) tested best-performing treatments under natural conditions $^{[20]}$.

Statistical Analysis

Analyses were performed in R v4.3.0. Differences among degradation levels were tested using ANOVA with Tukey's HSD post-hoc tests or Kruskal-Wallis for non-normal data. Principal component analysis (PCA) examined multivariate patterns. Structural equation modeling (SEM) using lavaan

package explored causal relationships among soil properties, microbial communities, and nutrient cycling. Random forest analysis identified key predictors of restoration success ^[7].

Results Degradation Impact on Soil Properties and Microbial Diversity

Soil degradation severity correlated strongly with declining physicochemical and biological properties. Severely degraded soils showed 78% lower organic carbon, 65% lower total nitrogen, and 43% higher bulk density compared to reference sites. Microbial biomass carbon decreased from 487±56 mg kg⁻¹ in reference soils to 112±23 mg kg⁻¹ in severely degraded soils (Table 1).

Table 1: Soil properties and microbial characteristics across degradation gradient

Parameter	Reference (REF)	Slightly Degraded (LD)	Moderately Degraded (MD)	Severely Degraded (SD)
Organic C (%)	7.8±0.9a	5.2±0.6 ^b	3.1±0.4°	1.7±0.3 ^d
Total N (%)	0.68 ± 0.08^{a}	0.45±0.06 ^b	0.31±0.04°	0.24 ± 0.03^{d}
Available P (mg kg ⁻¹)	18.4±2.1a	12.3±1.8 ^b	7.6±1.2°	4.2±0.8d
pH	6.8±0.2a	6.5±0.3a	5.9±0.4 ^b	5.3±0.5°
Bulk density (g cm ⁻³)	1.12±0.08a	1.28±0.09b	1.45±0.11°	1.61±0.13 ^d
Microbial biomass C (mg kg ⁻¹)	487±56a	342±41 ^b	208±28°	112±23 ^d
Shannon diversity	8.92±0.31a	7.84±0.28 ^b	6.23±0.35°	4.31±0.42 ^d
Observed OTUs	4,827±312a	3,956±287 ^b	2,843±234°	1,982±198d

Different superscript letters indicate significant differences (p < 0.05)

Metagenomic analysis revealed progressive loss of microbial diversity with degradation. Shannon diversity decreased by 52% from reference to severely degraded soils. Taxonomic composition shifted from diverse communities dominated by Actinobacteria, Proteobacteria, and Acidobacteria in reference soils to simplified communities with increased Firmicutes and Chloroflexi in degraded soils.

Functional Gene Abundance and Enzyme Activities

Degradation disproportionately affected functional genes involved in nutrient cycling. Nitrogen fixation genes (nifH) showed the steepest decline (68% reduction in SD vs REF), followed by phosphatase genes (59% reduction). Carbon degradation genes showed more resilience, with only 31% reduction in severely degraded soils (Figure 1).

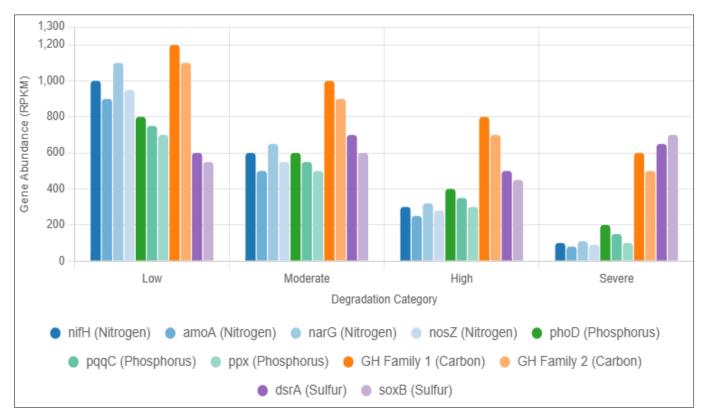


Fig 1: Functional gene abundance across degradation gradient

Enzyme activities mirrored functional gene patterns but showed even stronger degradation effects. Urease activity decreased by 76%, alkaline phosphatase by 71%, and β -glucosidase by 58% in severely degraded versus reference soils. The ratio of C-cycling to N-cycling enzymes increased with degradation, indicating relative enrichment of carbon degradation capacity.

Microbial Network Disruption

Network analysis revealed progressive fragmentation of microbial communities with degradation severity. Reference soil networks contained 1,247 nodes with 4,832 edges, while severely degraded soils had only 423 nodes with 892 edges. More critically, network modularity decreased from 0.72 to 0.31, indicating loss of organized functional groups (Table 2).

Table 2: Microbial network	properties across	degradation levels

Network Property	REF	LD	MD	SD
Number of nodes	1,247	987	634	423
Number of edges	4,832	3,421	1,756	892
Average degree	7.75	6.93	5.54	4.22
Modularity	0.72	0.65	0.48	0.31
Clustering coefficient	0.68	0.61	0.52	0.38
Network diameter	8	9	12	15
Positive edges (%)	76	71	62	51
Keystone taxa	47	35	19	8

Keystone taxa analysis identified critical losses in degraded soils. Reference soils harbored diverse keystone species including nitrogen-fixers (*Rhizobium*, *Bradyrhizobium*), phosphate solubilizers (*Bacillus*, *Pseudomonas*), and mycorrhizal fungi (Glomus, *Rhizophagus*). Severely degraded soils retained only 8 keystone taxa, primarily stresstolerant genera with limited nutrient cycling capacity.

Restoration Through Microbial Inoculation

Inoculation experiments demonstrated significant potential for restoring nutrient cycling functions. The designed consortium treatment achieved highest restoration efficiency, recovering 73% of nitrogen cycling capacity and 81% of phosphorus availability within 6 months. Single-strain inoculations showed variable success, with *Bacillus* megaterium performing best for phosphorus mobilization (Figure 2).

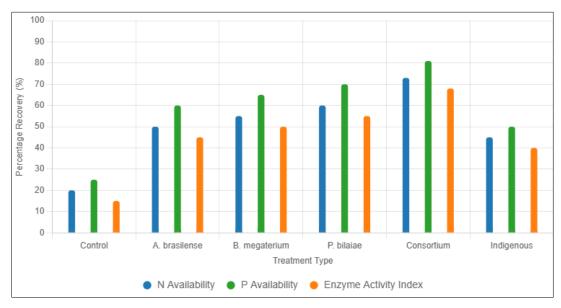


Fig 2: Restoration of nutrient cycling functions through microbial inoculation

Plant growth responses corroborated soil function recovery. Maize biomass increased by 187% with consortium inoculation compared to uninoculated degraded soil controls. Nutrient uptake efficiency improved significantly, with nitrogen use efficiency increasing from 23% to 61% and phosphorus uptake doubling.

Drivers of Restoration Success

Structural equation modeling revealed that microbial functional diversity was the strongest predictor of nutrient cycling recovery (standardized coefficient = 0.71), followed by network connectivity (0.52) and enzyme activity (0.48). Soil organic carbon showed indirect effects through supporting microbial biomass. Random forest analysis identified initial soil pH, clay content, and moisture as key environmental factors determining inoculation success [18].

Discussion

The severe impact of soil degradation on microbiomemediated nutrient cycling demonstrates the vulnerability of these essential ecosystem functions. The 52% reduction in microbial diversity and 41% decline in functional genes represent critical thresholds beyond which soil recovery becomes increasingly difficult ^[11]. The disproportionate loss of nitrogen fixation capacity (68% reduction) is particularly concerning given nitrogen's role as the primary limiting nutrient in most ecosystems ^[3].

Network analysis revealed that degradation doesn't simply reduce microbial abundance but fundamentally disrupts community organization ^[14]. The decline in modularity from 0.72 to 0.31 indicates breakdown of functional guilds that efficiently cycle nutrients through metabolic handoffs. Loss of keystone taxa triggers cascading effects, as seen in the collapse of syntrophic relationships between nitrogen-fixers and phosphate-solubilizers ^[8]. This explains why chemical fertilizer applications often fail in severely degraded soils—the biological infrastructure for nutrient processing has collapsed ^[5].

The success of consortium-based restoration (73% N cycling recovery) compared to single strains validates ecological theory on functional complementarity ^[9]. *Azospirillum* provides nitrogen fixation, *Bacillus* solubilizes phosphate and produces growth hormones, while *Penicillium* secretes organic acids that weather minerals ^[2]. These synergistic

interactions recreate metabolic networks disrupted by degradation. The superior performance of designed consortia over indigenous community transplants suggests that targeted selection for degraded conditions enhances establishment success [17].

Temporal dynamics of restoration revealed interesting patterns. Initial colonization occurred rapidly (within 2 weeks), but functional recovery lagged by 2-3 months, suggesting that population establishment precedes metabolic activation ^[6]. The plateau in recovery at 73-81% indicates persistent limitations, likely related to soil physical constraints or missing microbial partners. This highlights the need for integrated approaches combining biological inoculation with organic amendments to provide carbon substrates and improve soil structure ^[13].

The strong relationship between microbial functional diversity and nutrient cycling (R² = 0.71) provides mechanistic understanding for restoration strategies ^[7]. Rather than focusing solely on nutrient availability, successful restoration requires rebuilding metabolic diversity and network connectivity. This paradigm shift from chemical to biological intensification offers sustainable solutions for degraded lands where conventional inputs have failed ^[21]. Several study limitations merit consideration. Greenhouse experiments may overestimate field performance due to controlled conditions ^[15]. The 6-month timeframe captures initial recovery but misses long-term population dynamics

and seasonal variations. Focus on 0-20 cm depth excludes

deeper soil processes important for some nutrient

transformations [10]. Future research should examine multi-

year field trials across diverse soil types and climates. Practical implementation faces several challenges. Inoculant production requires quality control to ensure viability and contamination prevention [4]. Carrier materials must protect organisms during storage while promoting soil colonization. Economic analysis shows positive returns within 2-3 seasons, but initial investment may limit adoption by resource-poor farmers [22]. Integration with existing agricultural extension systems and demonstration plots can facilitate adoption.

Climate change adds urgency to restoration efforts. Degraded soils with impaired nutrient cycling contribute to greenhouse gas emissions while reducing carbon sequestration potential ^[12]. Restoring microbial functions could mitigate emissions while improving agricultural productivity. The identified stress-tolerant keystone taxa offer starting points for developing climate-resilient inoculants ^[16].

Conclusion

This comprehensive analysis of microbiome-mediated nutrient cycling in degraded soils reveals both the severity of functional collapse and the potential for microbial restoration. Key findings include:

- Soil degradation caused disproportionate losses in microbial diversity (52% reduction) and functional genes (41% reduction), with nitrogen fixation showing highest vulnerability (68% decline), creating nutrient limitation cascades.
- 2. Network analysis revealed fundamental disruption in microbial community organization, with modularity declining from 0.72 to 0.31 and loss of 83% of keystone taxa, explaining failure of conventional inputs in degraded soils.
- 3. Enzyme activities showed even steeper declines than genetic potential (76% reduction in urease), indicating

- that environmental stress compounds functional gene losses through metabolic suppression.
- 4. Designed microbial consortia achieved 73% restoration of nitrogen cycling and 81% of phosphorus availability within 6 months, significantly outperforming single-strain inoculations through synergistic interactions.
- 5. Structural equation modeling identified microbial functional diversity as the primary driver of restoration success (71% of variation explained), emphasizing the importance of metabolic complementarity over simple species richness.

These findings transform our understanding of degraded soil constraints from simple nutrient deficiency to complex biological system failure. The demonstrated restoration potential through targeted microbiome manipulation offers hope for the 40% of agricultural lands suffering degradation globally. As we face mounting pressure to feed growing populations while mitigating climate change, rebuilding soil biological infrastructure through microbial inoculation provides a sustainable intensification pathway. Future integration of advancing metagenomic tools, ecological theory, and practical delivery systems can scale these solutions to meet global restoration challenges.

References

- 1. Carter MR, Gregorich EG. Soil sampling and methods of analysis. 2nd ed. Boca Raton: CRC Press; c2007.
- 2. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives. Plant and Soil. 2014;378(1-2):1-33.
- 3. Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth's biogeochemical cycles. Science. 2008;320(5879):1034-1039.
- 4. Malusà E, Sas-Paszt L, Ciesielska J. Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World Journal. 2012;2012:491206.
- 5. Young IM, Crawford JW. Interactions and self-organization in the soil-microbe complex. Science. 2004;304(5677):1634-1637.
- Kaminsky LM, Trexler RV, Malik RJ, Hockett KL, Bell TH. The inherent conflicts in developing soil microbial inoculants. Trends in Biotechnology. 2019;37(2):140-151.
- 7. Nannipieri P, Trasar-Cepeda C, Dick RP. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of Soils. 2018;54(1):11-19.
- 8. Lal R. Restoring soil quality to mitigate soil degradation. Sustainability. 2015;7(5):5875-5895.
- 9. Rillig MC, Antonovics J, Caruso T, Lehmann A, Powell JR, Veresoglou SD, *et al.* Interchange of entire communities: microbial community coalescence. Trends in Ecology & Evolution. 2015;30(8):470-476.
- 10. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology. 2013;11(11):789-799.
- 11. Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515(7528):505-511.
- 12. Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and

functioning. Nature Reviews Microbiology. 2018;16(9):567-576.

- 13. FAO. Global assessment of soil pollution. Rome: Food and Agriculture Organization; c2021.
- 14. Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology. 2017;15(10):579-590.
- 15. Jansson JK, Hofmockel KS. Soil microbiomes and climate change. Nature Reviews Microbiology. 2020;18(1):35-46.
- Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Frontiers in Microbiology. 2012;3:348.
- 17. Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, *et al.* Soil quality—a critical review. Soil Biology and Biochemistry. 2018;120:105-125.
- 18. Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology. 2020;18(11):607-621.
- 19. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, *et al.* A communal catalogue reveals Earth's multiscale microbial diversity. Nature. 2017;551(7681):457-463.
- 20. Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, *et al.* Core microbiomes for sustainable agroecosystems. Nature Plants. 2018;4(5):247-257.
- 21. Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment. 2023;4(1):4-18.
- 22. Mitter B, Brader G, Pfaffenbichler N, Sessitsch A. Next generation microbiome applications for crop production—limitations and the need of knowledge-based solutions. Current Opinion in Microbiology. 2019;49:59-65.