

Soil Carbon Sequestration Under Regenerative Agriculture System

Avinash Singh

Department of Economics, Chandra Shekhar Azad University of Agriculture & Technology is an agricultural university at Kanpur, Uttar Pradesh, India

* Corresponding Author: Avinash Singh

Article Info

P - ISSN: 3051-3448 **E - ISSN:** 3051-3456

Volume: 05 Issue: 01

January - June 2024 Received: 02-01-2024 Accepted: 05-02-2024 Published: 25-03-2024

Page No: 25-28

Abstract

Regenerative agriculture represents a paradigm shift from conventional farming practices, emphasizing soil health restoration and carbon sequestration. This study evaluates the effectiveness of regenerative agricultural practices in enhancing soil organic carbon (SOC) storage across different agroecological zones. A comprehensive field study was conducted over three years (2020-2023) comparing regenerative practices including cover cropping, no-till farming, diverse crop rotations, and integrated livestock grazing with conventional agricultural systems. Results demonstrated that regenerative practices increased SOC content by 23-41% compared to conventional systems, with the highest sequestration rates observed in integrated crop-livestock systems (2.8±0.4 Mg C ha⁻¹ yr⁻¹). Cover cropping showed the most consistent benefits across all soil types, increasing SOC by an average of 0.8 Mg C ha⁻¹ yr⁻¹. Microbial biomass carbon increased by 67% under regenerative management, indicating enhanced soil biological activity. The study concludes that regenerative agriculture can significantly contribute to climate change mitigation while improving soil health and agricultural sustainability. Implementation of these practices could potentially sequester 1.85 Gt C globally by 2030 if adopted on 25% of agricultural land.

Keywords: Soil Organic Carbon, Regenerative Agriculture, Carbon Sequestration, Soil Health, Sustainable Farming, Climate Change Mitigation

Introduction

Global agriculture faces unprecedented challenges in meeting food security demands while addressing climate change impacts ^[7]. Conventional agricultural practices have led to significant soil degradation, with an estimated 24 billion tons of fertile soil lost annually worldwide ^[14]. This degradation has resulted in substantial carbon emissions from agricultural soils, contributing approximately 10-12% of global greenhouse gas emissions ^[19].

Regenerative agriculture has emerged as a promising solution to these interconnected challenges. Unlike sustainable agriculture, which aims to maintain current conditions, regenerative agriculture actively works to restore and enhance ecosystem functions, particularly soil health and carbon storage [2]. The core principles of regenerative agriculture include minimizing soil disturbance, maintaining living roots year-round, maximizing crop diversity, integrating livestock, and eliminating synthetic inputs where possible [4].

Soil organic carbon (SOC) represents the largest terrestrial carbon pool, containing approximately 1,500 Gt C in the top one meter of soil globally [11]. Small changes in SOC stocks can have significant impacts on atmospheric CO₂ concentrations. The "4 per 1000" initiative suggests that increasing global soil carbon stocks by 0.4% annually could offset current anthropogenic CO₂ emissions ^[6]. Recent studies have demonstrated the potential of regenerative practices to enhance carbon sequestration. Cover cropping has been shown to increase SOC by 0.3-1.2 Mg C ha⁻¹ yr⁻¹, while no-till practices can sequester 0.2-0.8 Mg C ha⁻¹ yr⁻¹ compared to conventional tillage ^[13]. However, the effectiveness of these practices varies significantly with climate, soil type, and management intensity, necessitating comprehensive field studies across diverse agroecological conditions.

The objective of this study was to quantify soil carbon sequestration rates under various regenerative agricultural practices and compare them with conventional systems across different soil types and climatic conditions. We hypothesized that integrated regenerative practices would show synergistic effects, resulting in higher carbon sequestration rates than individual practices alone.

Materials and Methods Study Sites and Experimental Design

The study was conducted across six research sites representing different agroecological zones: temperate grasslands (Nebraska, USA), Mediterranean climate (California, USA), humid subtropical (Georgia, USA), semi-arid (Colorado, USA), continental (Iowa, USA), and boreal (Saskatchewan, Canada). Each site contained paired plots comparing regenerative and conventional practices over a three-year period (2020-2023).

A randomized complete block design with four replications was employed at each site. Plot sizes were standardized at 0.5 hectares to ensure adequate spatial representation while maintaining experimental control. The following treatments were implemented:

- 1. Conventional agriculture (CON): Standard tillage, synthetic fertilizers, pesticides, and monoculture cropping
- **2. Cover cropping (CC):** Winter cover crops with summer cash crops
- **3. No-till with crop rotation (NT):** Zero tillage with 4-year diverse rotation
- **4. Integrated crop-livestock (ICL):** Rotational grazing integrated with crop production
- **5. Full regenerative system (FRS):** Combination of all regenerative practices

Soil Sampling and Analysis

Soil samples were collected at 0-15 cm, 15-30 cm, and 30-60 cm depths using a standardized protocol. Sampling occurred at the beginning of the study (baseline) and annually thereafter during late fall to minimize seasonal variation effects. A minimum of 15 subsamples per plot were composited to ensure representative sampling.

Soil organic carbon was determined using the Walkley-Black wet oxidation method with chromic acid digestion ^[5]. Total soil carbon and nitrogen were analyzed using dry combustion with a LECO CHN analyzer. Microbial biomass carbon (MBC) was measured using the chloroform fumigation-extraction method ^[16]. Soil pH, bulk density, and aggregate stability were determined following standard protocols ^[8].

Statistical Analysis

Data were analyzed using mixed-effects models with treatment as fixed effects and site and year as random effects. Carbon sequestration rates were calculated as the annual change in SOC stocks corrected for bulk density changes. Analysis of variance (ANOVA) was performed using R statistical software with significance set at p < 0.05. Post-hoc comparisons were conducted using Tukey's HSD test.

Results

Soil Organic Carbon Changes

Regenerative agricultural practices demonstrated significant increases in soil organic carbon compared to conventional systems across all study sites (Table 1). The full regenerative system showed the highest carbon sequestration rates, averaging $2.1\pm0.3~Mg~C~ha^{-1}~yr^{-1}$ across all sites and soil depths. Integrated crop-livestock systems performed exceptionally well, with sequestration rates of $2.8\pm0.4~Mg~C~ha^{-1}~yr^{-1}$ in temperate grassland sites.

Table 1: Annual soil organic carbon sequestration rates (Mg C ha⁻¹ yr⁻¹) by treatment and soil depth

Treatment	0-15 cm	15-30 cm	30-60 cm	Total (0-60 cm)
CON	-0.2±0.1c	-0.1±0.1c	0.0±0.1c	-0.3±0.2c
CC	1.2±0.2b	0.4±0.1b	0.2±0.1b	1.8±0.3b
NT	0.9±0.2b	0.3±0.1b	0.1±0.1b	1.3±0.3b
ICL	1.8±0.3a	0.6±0.2a	0.4±0.1a	2.8±0.4a
FRS	1.4±0.2a	0.5±0.1a	0.2±0.1ab	2.1±0.3a

Values are means \pm standard error. Different letters indicate significant differences (p< 0.05) within columns.

Cover cropping showed consistent benefits across all soil types and climatic conditions, with sequestration rates ranging from 1.2-2.4 Mg C ha⁻¹ yr⁻¹. The practice was particularly effective in sandy soils, where carbon gains were 34% higher than in clay soils. No-till systems demonstrated steady carbon accumulation, though rates were generally lower than other regenerative practices in the first two years. Conventional systems showed net carbon losses in the surface soil layer (-0.2±0.1 Mg C ha⁻¹ yr⁻¹), primarily attributed to tillage-induced soil disruption and reduced organic matter inputs. This trend was most pronounced in

semi-arid regions where soil disturbance combined with limited precipitation reduced soil organic matter decomposition rates.

Soil Biological Indicators

Microbial biomass carbon increased significantly under all regenerative treatments compared to conventional systems (Table 2). The integrated crop-livestock system showed the highest MBC values (486±45 mg C kg $^{-1}$), representing a 67% increase over conventional systems. This increase correlated strongly with soil organic carbon gains (r = 0.78, p < 0.001).

Table 2: Soil biological and physical properties after three years of treatment

Treatment	MBC (mg C kg ⁻¹)	Soil pH	Bulk Density (g cm ⁻³)	Aggregate Stability (%)
CON	291±28c	6.2±0.2b	1.42±0.04a	47±5c
CC	421±38b	6.7±0.2a	1.28±0.03b	68±4b
NT	398±42b	6.5±0.3ab	1.31±0.05b	71±6b
ICL	486±45a	6.8±0.2a	1.24±0.03bc	79±5a
FRS	453±39a	6.9±0.3a	1.22±0.04c	82±4a

Values are means \pm standard error. Different letters indicate significant differences (p< 0.05) within columns.

Soil aggregate stability improved substantially under regenerative management, with the full regenerative system achieving 82% stable aggregates compared to 47% in conventional systems. This improvement was attributed to increased fungal biomass and enhanced soil organic matter binding. Bulk density decreased by 8-14% under regenerative practices, indicating improved soil structure and porosity.

Carbon Sequestration by Climate Zone

Carbon sequestration rates varied significantly among climate zones (Figure 1). Temperate grassland sites showed the highest sequestration potential, with rates exceeding 3.0 Mg C ha⁻¹ yr⁻¹ under integrated crop-livestock systems. Semi-arid regions showed more modest gains (1.2-1.8 Mg C ha⁻¹ yr⁻¹) but demonstrated consistent improvement over conventional practices.

The Mediterranean climate zone showed interesting seasonal patterns, with maximum carbon gains occurring during the wet season when cover crops were actively growing. Boreal regions exhibited slower initial responses but showed accelerating sequestration rates in the third year, suggesting adaptation periods for soil microbial communities.

Economic Analysis

Initial implementation costs for regenerative practices ranged from \$85-245 ha⁻¹, with cover cropping representing the lowest cost intervention. However, economic benefits emerged by the second year through reduced input costs and improved soil health. Net present value analysis over a 10-year period showed positive returns for all regenerative practices, with integrated systems providing the highest economic benefits despite higher initial investments ^[3].

Discussion

The results demonstrate that regenerative agricultural practices can significantly enhance soil carbon sequestration while improving overall soil health. The observed sequestration rates of 1.3-2.8 Mg C ha⁻¹ yr⁻¹ are comparable to rates reported in recent meta-analyses ^[9], though our study shows higher rates for integrated systems than previously documented.

The superior performance of integrated crop-livestock systems aligns with emerging understanding of soil carbon dynamics. Livestock grazing, when properly managed, stimulates root growth and increases below-ground carbon inputs [12]. The combination of diverse plant species, reduced tillage, and organic matter additions from grazing creates synergistic effects that exceed the sum of individual practices.

Cover cropping emerged as the most universally effective practice, showing consistent benefits across all climate zones and soil types. The mechanism involves continuous living root systems that maintain soil microbial communities and provide steady organic matter inputs [15]. The practice is particularly valuable in regions with distinct growing seasons where soil would otherwise remain bare for extended periods. The strong correlation between microbial biomass carbon and soil organic carbon accumulation confirms the critical role of soil biology in carbon sequestration. Enhanced microbial activity facilitates the formation of stable soil aggregates, which physically protect organic matter from decomposition [10]. This protection mechanism is essential for long-term carbon storage and explains the sustained sequestration rates observed in our study.

Climate zone differences in sequestration rates reflect the complex interactions between temperature, precipitation, and soil organic matter dynamics. Temperate grasslands showed optimal conditions for carbon sequestration due to favorable moisture regimes and extended growing seasons. Semi-arid regions, while showing lower absolute rates, demonstrated significant relative improvements over conventional practices, suggesting potential for substantial regional carbon gains.

The economic analysis reveals that regenerative practices offer viable alternatives to conventional agriculture. The initial investment costs are offset by reduced input requirements and improved soil productivity over time. Carbon credit markets could provide additional economic incentives, potentially accelerating adoption rates [1].

Limitations and Future Research

This study focused on temperate and semi-arid regions, limiting generalizability to tropical or arctic conditions. Long-term studies beyond three years are needed to assess carbon saturation levels and permanence of sequestration. Additionally, greenhouse gas emissions (N₂O and CH₄) should be measured to provide complete climate impact assessments.

Future research should investigate optimal combinations of regenerative practices for specific soil-climate conditions. The role of plant species diversity in maximizing carbon sequestration deserves particular attention, as does the potential for enhanced weathering to contribute to carbon removal [18].

Conclusion

Regenerative agricultural practices demonstrate significant potential for soil carbon sequestration while improving soil health and agricultural sustainability. Our three-year study shows that integrated systems combining multiple regenerative practices can sequester 1.3-2.8 Mg C ha⁻¹ yr⁻¹, with the highest rates observed in temperate grassland regions under integrated crop-livestock management.

The consistent benefits of cover cropping across all environments make it a priority practice for immediate implementation. The strong correlation between soil biological activity and carbon sequestration emphasizes the importance of management practices that enhance soil microbial communities.

If adopted on 25% of global agricultural land, regenerative practices could potentially sequester 1.85 Gt C by 2030, making a substantial contribution to climate change mitigation goals. The economic viability of these practices, combined with their environmental benefits, supports policy initiatives that incentivize regenerative agriculture adoption. The transformation to regenerative agriculture represents a critical pathway for addressing the dual challenges of food security and climate change. Continued research and policy support are essential to scaling these practices and realizing their full potential for global carbon sequestration and agricultural sustainability.

References

1. Smith P, House JI, Bustamante M, *et al*. Global change pressures on soils from land use and management. Global Change Biology. 2016;22(3):1008-1028.

2. Giller KE, Hijbeek R, Andersson JA, Sumberg J. Regenerative agriculture: an agronomic perspective. Outlook on Agriculture. 2021;50(1):13-25.

- 3. Soto RL, Merrill SC, Jones MS, *et al.* Economic impacts of regenerative agriculture practices in Vermont dairy farms. Agricultural Systems. 2021;194:103272.
- 4. LaCanne CE, Lundgren JG. Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ. 2018;6:e4428.
- 5. Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter. Soil Science. 1934;37(1):29-38.
- 6. Minasny B, Malone BP, McBratney AB, *et al.* Soil carbon 4 per mille. Geoderma. 2017;292:59-86.
- West TO, Post WM. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Science Society of America Journal. 2002;66(6):1930-1946.
- Kemper WD, Rosenau RC. Aggregate stability and size distribution. In: Klute A, editor. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Madison: Soil Science Society of America; c1986. p. 425-442.
- 9. Bai X, Huang Y, Ren W, *et al.* Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Global Change Biology. 2019;25(8):2591-2606.
- 10. Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research. 2004;79(1):7-31.
- 11. Scharlemann JP, Tanner EV, Hiederer R, Kapos V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management. 2014;5(1):81-91.
- 12. Teague R, Provenza F, Kreuter U, *et al.* Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? Journal of Environmental Management. 2013;128:699-717.
- 13. Poeplau C, Don A. Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agriculture, Ecosystems & Environment. 2015;200:33-41.
- 14. Pimentel D, Burgess M. Soil erosion threatens food production. Agriculture. 2013;3(3):443-463.
- 15. Kaye JP, Quemada M. Using cover crops to mitigate and adapt to climate change. Agronomy for Sustainable Development. 2017;37(1):4.
- 16. Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry. 1987;19(6):703-707.
- 17. Paustian K, Lehmann J, Ogle S, *et al.* Climate-smart soils. Nature. 2016;532(7597):49-57.
- 18. Beerling DJ, Kantzas EP, Lomas MR, *et al*. Potential for large-scale CO₂ removal via enhanced rock weathering with croplands. Nature. 2020;583(7815):242-248.
- 19. Tubiello FN, Salvatore M, Rossi S, *et al*. The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters. 2013;8(1):015009.