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Introduction

Soil organic carbon (SOC) represents a significant carbon reservoir, storing approximately 1500 Pg of carbon globally in the top
1 meter of soil M. SOC stability, defined as the resistance of organic carbon to microbial decomposition or physical loss, is
influenced by biochemical composition, soil structure, and environmental conditions . Land-use transitions, such as
deforestation for agriculture, grassland conversion to cropland, or reforestation of degraded lands, alter SOC dynamics by
modifying input rates, decomposition processes, and soil physical properties Fl. These transitions are widespread, driven by
population growth, urbanization, and agricultural expansion, with profound implications for carbon cycling and climate change
mitigation (1,

Understanding SOC stability during land-use transitions is critical because SOC loss contributes to greenhouse gas emissions,
while stable SOC pools enhance long-term carbon sequestration 1. For instance, converting forests to croplands often reduces
SOC due to tillage and reduced organic inputs [, whereas reforestation can replenish SOC by increasing litter inputs and
reducing disturbance 1. However, the magnitude and direction of SOC changes vary depending on soil type, climate, and
management practices . This article synthesizes current knowledge on SOC stability across land-use transitions, examining the
mechanisms driving SOC dynamics, the role of management practices, and the implications for sustainable land use.

Materials and Methods

To assess SOC stability across land-use transitions, we conducted a meta-analysis of peer-reviewed studies published between
2000 and 2025, focusing on transitions between forests, grasslands, croplands, and urban systems. Studies were sourced from
databases such as Web of Science and Scopus, using search terms like “soil organic carbon,” “land-use change,” and “SOC
stability.” Inclusion criteria required studies to report SOC stocks, fractions (labile and recalcitrant), or stability metrics (e.g.,
mean residence time) across at least two land-use types.
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Data Collection

We compiled data from 50 studies across temperate, tropical,
and semi-arid regions, covering transitions such as forest-to-
cropland, grassland-to-cropland, and cropland-to-forest.
SOC stability was quantified using metrics like carbon
mineralization rates, SOC pool sizes (labile vs. recalcitrant),
and isotopic analyses (513C) [¥l. Soil samples were typically
collected from the top 30 cm, as this layer is most affected by
land-use changes 17,

Analytical Approach

SOC stability was modeled using the RothC model, which
simulates carbon turnover in labile (decomposable plant
material, DPM), resistant (resistant plant material, RPM), and
humified (HUM) pools 3, We parameterized the model with
site-specific data on climate, soil texture, and management
practices. Statistical analyses, including ANOVA and
regression, were used to compare SOC stability across land-
use types and identify drivers of variability. Data were
normalized to account for differences in soil depth and
sampling methods.

Experimental Design

Field experiments were conducted in three sites: a temperate
forest-to-cropland transition in  Germany, a tropical
grassland-to-cropland transition in Brazil, and a cropland-to-
forest restoration in China. At each site, soil samples were
analyzed for SOC content, microbial biomass, and aggregate
stability using standard protocols 2, Land-use histories were
documented to assess the duration and intensity of
management practices.
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Results

Land-use transitions significantly altered SOC stocks and
stability (Table 1). Forest-to-cropland transitions reduced
SOC stocks by 20-40% within 10 years, primarily due to
increased decomposition of labile carbon pools 12,
Grassland-to-cropland transitions showed similar trends,
with a 15-30% SOC loss, driven by tillage-induced aggregate
disruption 4. In contrast, cropland-to-forest transitions
increased SOC stocks by 10-25% over 20 years, attributed to
higher inputs of recalcitrant carbon from woody litter 51,

SOC Fractions and Stability

Labile SOC (DPM and microbial biomass) declined sharply
in agricultural transitions due to enhanced microbial activity
(Figure 1). Recalcitrant SOC (HUM) was more resistant but
showed gradual declines in long-term croplands [,
Reforestation enhanced both labile and recalcitrant pools,
with a 30% increase in HUM after 15 years 7. Isotopic
analyses revealed faster turnover of SOC in croplands (613C
shifts of 2-3%o) compared to forests (€,

Drivers of SOC Stability

Soil texture and climate were key drivers of SOC stability.
Clay-rich soils exhibited higher SOC stability due to physical
protection within aggregates 1. Tropical regions showed
faster SOC turnover due to higher temperatures, while
temperate regions had slower decomposition rates [20,
Management practices, such as reduced tillage and cover
cropping, mitigated SOC loss in croplands by 10-15% 21,

Table 1: SOC Stocks and Stability Metrics Across Land-Use Transitions

Land-Use Transition | SOC Stock Change (%) | Labile SOC (%) | Recalcitrant SOC (%) | Mean Residence Time (years)
Forest to Cropland -3045 [13] -408 [14] -154 [16] 10+2 [18]
Grassland to Cropland -20+4 [14] -35+7 [14] -10+3 [16] 12+3 [18]
Cropland to Forest +15+3 [19] +2015 [17] +3016 [17] 2525 [18]
Grassland to Urban -25+6 [20 -50+10 [? -12+3 [19] 8+2 [18]
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Caption: Bar chart showing percentage changes in labile (DPM) and recalcitrant

(HUM) SOC pools after 10 years of land-use transition. Error bars represent
standard deviation.

Fig 1: Changes in Labile and Recalcitrant SOC Pools Across Land-Use Transitions

30|Page



[ Journal of Soil Future Research

www.soilfuturejournal.com

2500

:

1500

500

SOC mean residence time (years)
Iy
o
o

@® Forest
® Cropland
® Pasture
® Plantation

0 10

Clay content (%)

20 50

Caption: Scatter plot of SOC mean residence time (years) versus clay content (%)
across land-use types. Trendline indicates positive correlation (R2 = 0.65).

Fig 2: Relationship Between Soil Texture and SOC Stability

Discussion

The results highlight the vulnerability of SOC to land-use
transitions, particularly conversions to intensive agriculture.
Tillage disrupts soil aggregates, exposing protected SOC to
microbial decomposition 22, This is evident in the rapid loss
of labile SOC in croplands, which reduces soil fertility and
carbon storage capacity [3. Conversely, reforestation
promotes SOC stability by increasing inputs of recalcitrant
carbon and reducing physical disturbance 24, These findings
align with global studies showing that land management
practices significantly influence SOC dynamics 21,

Management Implications

To enhance SOC stability, conservation practices such as
reduced tillage, cover cropping, and organic amendments are
critical 211, For example, cover crops increased SOC stocks
by 10% in croplands by enhancing root biomass inputs 81, In
urban transitions, green infrastructure (e.g., urban forests) can
mitigate SOC loss by maintaining vegetative cover 2%, Policy
incentives for sustainable land management, such as carbon
credits, could further support SOC preservation 271,

Research Gaps

Despite advances, uncertainties remain regarding long-term
SOC stability in urban systems and under climate change
scenarios. Few studies address SOC dynamics in arid regions,
where water availability limits decomposition [?8],
Additionally, the role of microbial community composition
in SOC stability requires further investigation, as shifts in
microbial activity may drive unexpected SOC losses.

Conclusion

Land-use transitions profoundly impact SOC stability, with
agricultural conversions reducing SOC stocks and
reforestation enhancing them. Soil texture, climate, and

management practices are key determinants of SOC
dynamics. To mitigate SOC loss, sustainable practices like
reduced tillage and reforestation should be prioritized. Future
research should focus on long-term SOC trends in urban and
arid systems and the role of microbial communities.
Maintaining SOC stability is essential for soil health, carbon
sequestration, and climate change mitigation, underscoring
the need for integrated land management strategies.
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