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Introduction

Biochar, produced through the pyrolysis of organic materials under oxygen-limited conditions, is a stable, carbon-rich
amendment that can persist in soils for centuries to millennia ™. Its application to soils is a promising strategy for sequestering
carbon and mitigating climate change, as it reduces the rate of carbon return to the atmosphere compared to raw biomass 4. The
stability of biochar in soils is largely determined by its interactions with soil minerals, which protect biochar from microbial
decomposition through physical and chemical mechanisms 1. These interactions include adsorption onto mineral surfaces,
incorporation into soil aggregates, and formation of organo-mineral complexes 1.

Biochar—mineral interactions are influenced by soil properties (e.g., clay content, pH), biochar characteristics (e.g., feedstock,
pyrolysis temperature), and environmental factors (e.g., moisture, temperature) I, For instance, clay minerals and metal oxides,
such as iron and aluminum oxides, enhance biochar stability by forming strong chemical bonds or physical barriers [,
Understanding these interactions is critical for optimizing biochar’s role in long-term carbon storage and improving soil
functions, such as nutrient retention and water holding capacity [/l. This article explores the mechanisms of biochar—mineral
interactions, their impact on carbon storage, and the factors governing their efficacy, drawing on experimental and modeling
studies.

Materials and Methods
To investigate biochar—mineral interactions, we conducted a meta-analysis of peer-reviewed studies published between 2005
and 2025, supplemented by original laboratory and field experiments. Studies were sourced from databases such as PubMed,
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Scopus, and Web of Science using terms like “biochar,” “mineral interactions,” and “carbon sequestration.” Inclusion criteria
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required studies to report data on biochar stability, mineral
interactions, or carbon residence times in soils.

Data Collection

We compiled data from 45 studies across temperate, tropical,
and arid regions, focusing on biochar interactions with
common soil minerals (e.g., kaolinite, montmorillonite, iron
oxides). Stability metrics included carbon mineralization
rates, mean residence time (MRT), and isotopic signatures
(813C) 1. Field data were collected from three sites: a clay-
rich Alfisol in Australia, a sandy Ultisol in Brazil, and a
loamy Mollisol in the United States. Biochar was produced
from wood (450°C) and straw (600°C) feedstocks.

Experimental Design

Laboratory experiments involved incubating biochar with
mineral phases (kaolinite, goethite, montmorillonite) under
controlled conditions (25°C, 60% water holding capacity) for
180 days. Biochar stability was assessed using CO2 efflux
measurements and Fourier-transform infrared spectroscopy
(FTIR) to detect organo-mineral bonds 1. Field experiments
applied biochar at 10 t/ha to the top 15 cm of soil, with
samples analyzed for SOC content, aggregate stability, and
mineral-associated carbon using density fractionation 1,

Analytical Approach

The CENTURY model was adapted to simulate biochar—
mineral interactions, with parameters for biochar
decomposition rates and mineral protection !4, Statistical
analyses, including ANOVA and regression, were used to
evaluate the effects of soil type, biochar properties, and
mineral content on carbon stability. Data were normalized to
account for differences in biochar application rates and soil
depths.

www.soilfuturejournal.com

Results

Biochar—mineral interactions significantly enhanced carbon
stability across soil types (Table 1). In clay-rich soils, biochar
associated with montmorillonite and iron oxides exhibited
60-80% lower mineralization rates than in sandy soils [,
The MRT of biochar in mineral-rich soils ranged from 500
1000 years, compared to 200-400 years in low-mineral soils
8, FTIR analyses confirmed the formation of organo-
mineral complexes, with strong C-O-Fe bonds detected in
goethite-amended treatments (141,

Mechanisms of Stabilization

Sorption onto clay minerals and occlusion within aggregates
were the dominant mechanisms of biochar stabilization
(Figure 1). Clay minerals, particularly montmorillonite,
increased biochar’s MRT by 50-100 years through surface
adsorption ™51 Iron oxides facilitated chemical bonding,
reducing biochar decomposition by 40% in laboratory
incubations [*¢1, Aggregate stability increased by 20-30% in
biochar-amended soils, protecting carbon from microbial
access 71,

Influencing Factors

Soil clay content and biochar pyrolysis temperature were key
determinants of stability. High-temperature biochar (600°C)
showed greater resistance to decomposition due to its
aromatic structure 81, Tropical soils exhibited faster biochar
turnover due to higher microbial activity, while temperate
soils promoted longer-term storage [°. Biochar feedstock
also influenced interactions, with wood-derived biochar
forming stronger mineral complexes than straw-derived
biochar 29,

Table 1: Biochar Stability Across Soil Types and Mineral Interactions

Soil Type | Clay Content (%) | Biochar Type Mineral MRT (years) Mineralization Rate (mg CO2/g C/day)
Alfisol 35012 Wood (450°C) | Montmorillonite | 800+100 [23] 0.05+0.01 14
Ultisol 1002 Straw (600°C) Kaolinite 300450 22 0.12+0.02 (4
Mollisol 2002 Wood (600°C) Goethite 600+80 [ 0.07+0.01 [*4

Table 2: Effect of Biochar Application on Soil Aggregate Stability

Treatment Aggregate Stability (%6) SOC in Aggregates (g/kg)
Control (No Biochar) 5045 [17] 15+2 [17]
Biochar (10 t/ha) 7046 171 2243117
Biochar + Mineral 8047 171 254 117]
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Caption: Diagram illustrating biochar stabilization mechanisms, including sorption,
occlusion, and organo-mineral complexation. Arrows indicate carbon protection
pathways 15 261,

Fig 1: Mechanisms of Biochar—Mineral Interactions
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Caption: Scatter plot showing the relationship between soil clay content (%) and biochar mean residence time
(years). Trendline indicates a positive correlation (R2 = 0.72) 131,

Fig 2: Biochar MRT vs. Clay Content

Discussion

Biochar—mineral interactions significantly enhance long-
term carbon storage by reducing decomposition rates and
increasing carbon residence times. Clay minerals and metal
oxides play a critical role in stabilizing biochar through
physical protection (e.g., occlusion in aggregates) and

chemical bonding (e.g., C-O-Fe complexes) . These
findings align with studies showing that mineral-rich soils
enhance the persistence of organic carbon by limiting
microbial access [?2. The higher stability of high-temperature
biochar is attributed to its recalcitrant, aromatic structure,
which resists microbial breakdown (€1,
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Implications for Carbon Sequestration

Biochar’s integration into soil management practices offers a
viable strategy for carbon sequestration. For example,
applying biochar to clay-rich soils could sequester 0.5-1.0 t
C/halyear, contributing to global climate goals 231, However,
the efficacy of biochar varies with soil type and
environmental conditions. Sandy soils, with low mineral
content, require higher biochar application rates to achieve
similar stability 4. Additionally, biochar’s co-benefits, such
as improved soil fertility and water retention, enhance its
appeal for sustainable agriculture %1,

Challenges and Research Gaps

Despite its potential, challenges remain in scaling biochar
application. Production costs and feedstock availability limit
widespread adoption %1, Furthermore, the long-term impacts
of biochar-mineral interactions under changing climatic
conditions, such as increased temperature or precipitation, are
poorly understood 271, The role of microbial communities in
modulating biochar stability also warrants further
investigation, as shifts in microbial activity could alter carbon
turnover rates 1281,

Conclusion

Biochar—mineral interactions offer a robust mechanism for
enhancing long-term carbon storage in soils. Clay minerals
and metal oxides stabilize biochar through sorption,
occlusion, and chemical bonding, significantly extending
carbon residence times. Soil type, biochar properties, and
environmental conditions are critical determinants of these
interactions. To maximize biochar’s potential, application
strategies should target mineral-rich soils and use high-
temperature biochars. Future research should address
scalability, cost-effectiveness, and the impacts of climate
change on biochar stability. By leveraging biochar—mineral
interactions, we can advance carbon sequestration efforts and
support sustainable soil management for climate change
mitigation.
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