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Introduction

Soil organic carbon (SOC) is a critical component of the global carbon cycle, influencing climate regulation, soil fertility, and
ecosystem services. The SOC saturation theory suggests that soils have a limited capacity to store carbon, primarily through the
mineral-associated organic carbon (MAOC) fraction, which binds to fine mineral particles (clay and silt) and is more stable than
the particulate organic carbon (POC) fraction [, This saturation capacity varies across climate zones due to differences in
temperature, precipitation, and soil properties, which affect carbon inputs and decomposition rates [,

Understanding SOC saturation is essential for developing effective carbon sequestration strategies to mitigate climate change.
Temperate zones, with moderate temperatures and high clay content, often exhibit higher SOC saturation, while Mediterranean
and boreal zones face unigque challenges due to seasonal drought and cold temperatures, respectively El. This article aims to
synthesize current knowledge on SOC saturation, present new modeling results, and discuss implications for agricultural soils
under diverse climate zones. The objectives are to: (1) quantify SOC saturation levels, (2) model SOC dynamics using pedo-
climatic data, and (3) propose management strategies for enhancing carbon storage.

Materials and Methods

Study Sites

We selected three climate zones for analysis: temperate (Germany), Mediterranean (Spain), and boreal (Finland). These regions
were chosen based on their distinct climatic characteristics and soil types. Temperate zones had loamy soils with 20-40% clay,
Mediterranean zones had sandy loam soils with 10-20% clay, and boreal zones had organic-rich soils with 5-15% clay. Data
were sourced from the LUCAS soil survey (2009-2018) and supplemented with local soil sampling 4.

Soil Sampling and Analysis Soil samples were collected from the top 30 cm at 50 sites per
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climate zone. SOC was measured using dry combustion, and
fractions (POC and MAOC) were separated via density
fractionation ™. Clay content was determined using the
pipette method. MAOC saturation was calculated as the ratio
of measured MAOC to the theoretical maximum MAOC
capacity, based on fine fraction content 4,

Modeling Approach

We employed the RothC model to simulate SOC dynamics,
modified to account for climate-specific decomposition rates.
Inputs included climate data (temperature, precipitation), soil
texture, and carbon inputs from crop residues. The model was
calibrated using LUCAS data and validated with independent
datasets [, Effective MAOC capacity was estimated using
boundary line (BL) and piece-wise boundary line (PBL)
methods, as described by Feng et al. . Statistical analyses
were conducted using R packages (tidyverse, quantreg) to
assess correlations between SOC saturation and climate
variables 1,
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Statistical Analysis

Linear regression was used to evaluate the relationship
between clay content and MAOC saturation, with Pearson’s
correlation coefficient (r) calculated. Analysis of variance
(ANOVA) tested differences in SOC saturation across
climate zones. All analyses were performed at a significance
level of p< 0.05.

Results

SOC Saturation Across Climate Zones

Temperate zones exhibited the highest MAOC saturation
(70-85%), followed by Mediterranean (50-65%) and boreal
zones (30-50%) (Table 1). Clay content was strongly
correlated with MAOC saturation in temperate zones (r =
0.78, p< 0.01) but showed weaker correlations in
Mediterranean (r = 0.62) and boreal zones (r = 0.45) [¥1, POC
dominated in boreal soils, comprising 60—70% of total SOC,
due to slower decomposition rates under cold conditions.

Table 1: SOC Saturation and Soil Properties Across Climate Zones

Climate Zone | Clay Content (%) MAQOC Saturation (%) POC:SOC Ratio | SOC (g kg™
Temperate 20-40 70-85 0.30-0.40 25-35
Mediterranean 10-20 50-65 0.40-0.50 15-25
Boreal 5-15 30-50 0.60-0.70 30-45

Modeling Outcomes

The RothC model predicted that temperate soils could
sequester an additional 5-10 g C kg before reaching
saturation, while Mediterranean and boreal soils had lower
potentials (3-7 g C kg™ and 2-5 g C kg, respectively).

Temperature and moisture were significant drivers, with
temperate zones showing optimal conditions for MAOC
formation (Figure 1). The PBL method outperformed BL in
estimating effective MAOC capacity, with R2 values of 0.65—
0.80 across zones ™1,
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Caption: Scatter plot showing mean annual temperature (°C) versus MAQOC saturation (%) across climate zones. Trendline indicates a
parabolic relationship (R = 0.68).

Fig 1: Relationship Between Temperature and MAOC Saturation
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Caption: Scatter plot showing the relationship between soil clay content (%) and biochar mean residence time (years). Trendline
indicates a positive correlation (R? = 0.72).

Fig 2: Biochar MRT vs. Clay Content

Carbon Dynamics

SOC changes from 2009-2018 showed gains in temperate
zones (+1.2 g C kg™) but losses in Mediterranean zones (-0.8
g C kg™) due to drought-induced decomposition 1. Boreal
zones had stable SOC levels, attributed to low microbial
activity. The MAOC:SOC ratio was a strong predictor of
SOC stability, with higher ratios linked to lower losses (r =
0.72, p< 0.01) ™.

Discussion

Climate Zone Influences

The higher MAOC saturation in temperate zones aligns with
the SOC saturation theory, as clay-rich soils provide more
binding sites for carbon [, Mediterranean zones, with lower
clay content and seasonal drought, face challenges in
maintaining MAQOC, leading to higher POC reliance and
vulnerability to losses . Boreal zones, despite high SOC
content, have low MAOC saturation due to limited mineral
interactions, making them susceptible to carbon loss under
warming scenarios F1.

Modeling Insights

The RothC model’s ability to incorporate climate variables
highlights the importance of temperature and moisture in
SOC dynamics. The parabolic relationship in Figure 1
suggests an optimal temperature range (10-15 °C) for MAOC
formation, beyond which decomposition accelerates 1. The
PBL method’s superior performance indicates that
accounting for MAOC contamination improves saturation
estimates, supporting findings by Feng et al. [,

Management Implications

To enhance SOC sequestration, temperate zones should focus
on maintaining carbon inputs through cover cropping, while
Mediterranean zones require irrigation to stabilize MAOC B,
Boreal zones could benefit from reduced tillage to protect
POC Bl These strategies must consider the SOC risk index,
which identifies high-risk soils near saturation &I,

Limitations

The study relied on LUCAS data, which may not capture
micro-scale variations. Model assumptions, such as constant
carbon inputs, may oversimplify real-world dynamics. Future
research should integrate microbial activity and long-term
climate projections [,

Conclusion

SOC saturation theory provides a framework for
understanding carbon storage limits across climate zones.
Temperate zones exhibit the highest MAOC saturation, while
Mediterranean and boreal zones face constraints due to
climate and soil properties. Modeling efforts confirm that
climate-driven factors significantly influence SOC dynamics,
necessitating zone-specific management strategies. By
optimizing carbon inputs and protecting MAOC, agricultural
soils can enhance carbon sequestration, contributing to
climate change mitigation. Further research is needed to
refine models and address micro-scale variability.
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