Journal of Soil Future Research www.soilfuturejournal.com

Microbial Phosphorus Solubilization under Drought Conditions

Ramesh Adhikari

Faculty of Agriculture, Tribhuvan University, Nepal

* Corresponding Author: Ramesh Adhikari

Article Info

P - ISSN: 3051-3448 **E - ISSN:** 3051-3456

Volume: 05 Issue: 01

January - June 2024 Received: 10-02-2024 Accepted: 07-03-2024 Published: 25-04-2024

Page No: 45-47

Abstract

Phosphorus (P) availability is a critical factor limiting plant growth, particularly under drought conditions, where soil moisture deficits impair nutrient uptake. This article investigates the role of phosphorus-solubilizing microorganisms (PSMs) in enhancing P availability in agricultural soils under drought stress. Field and laboratory experiments were conducted across Mediterranean and semi-arid soils to assess microbial activity, P solubilization rates, and plant growth responses. Results showed that drought-tolerant PSMs, such as *Bacillus* and *Pseudomonas* species, increased soluble P by 20–35% under water-limited conditions compared to controls. Soil enzyme activities and microbial biomass were reduced under drought but partially mitigated by PSM inoculation. These findings highlight the potential of PSMs to improve P availability and support crop resilience in water-stressed environments, offering insights for sustainable agriculture in drought-prone regions.

Keywords: Phosphorus Solubilization, Drought Stress, Phosphorus-Solubilizing Microorganisms, Soil Microbial Activity, Sustainable Agriculture, Nutrient Availability

Introduction

Phosphorus (P) is an essential nutrient for plant growth, but its availability in soils is often limited due to fixation in insoluble forms, such as calcium or iron phosphates [1]. Drought conditions exacerbate this issue by reducing soil moisture, which restricts P diffusion and microbial activity, thereby limiting plant access to this critical nutrient [2]. Phosphorus-solubilizing microorganisms (PSMs), including bacteria (*Bacillus*, *Pseudomonas*) and fungi (*Aspergillus*, *Penicillium*), can enhance P availability by producing organic acids and enzymes that convert insoluble P into bioavailable forms [3].

Under drought stress, microbial communities face challenges such as reduced water availability and altered soil chemistry, which can suppress P solubilization [4]. However, certain drought-tolerant PSMs have shown resilience, maintaining activity under water-limited conditions [5]. This study aims to quantify the effectiveness of PSMs in solubilizing P under drought, evaluate their impact on soil enzyme activity and microbial biomass, and assess their role in supporting plant growth. The objectives are to: (1) measure P solubilization rates under varying drought intensities, (2) assess PSM impacts on soil microbial properties, and (3) evaluate plant growth responses in drought-affected soils.

Materials and Methods

Experimental Locations and Soil Characteristics

Field experiments were conducted in two regions: Mediterranean (Spain) and semi-arid (Morocco) agricultural sites. These locations were selected for their distinct climatic conditions and history of drought stress, coupled with low P availability (5–10 mg kg⁻¹ Olsen P) ^[6]. Mediterranean soils were sandy loam with 15–20% clay, while semi-arid soils were loamy with 10–15% clay. Laboratory experiments complemented field studies using controlled drought simulations to replicate these conditions.

Journal of Soil Future Research www.soilfuturejournal.com

Soil Collection and Experimental Setup

Soil samples were collected from the top 20 cm at 50 sites per region in 2023. Field trials employed a factorial design with two factors: drought stress (control, moderate, severe) and PSM inoculation (*Bacillus subtilis*, *Pseudomonas fluorescens*, or no inoculation). Drought was simulated by reducing irrigation to 70% (moderate) and 40% (severe) of field capacity ^[7]. Laboratory experiments used soil microcosms under similar drought levels, inoculated with PSMs at 10⁸ CFU g⁻¹ soil.

Microbial and Chemical Analyses

Soluble P was measured using the Olsen method, and total P was determined via acid digestion [8]. Microbial biomass carbon (MBC) was quantified using the fumigation-extraction method, and phosphatase enzyme activity was assessed using p-nitrophenyl phosphate as a substrate [9]. PSM populations were enumerated via plate counts on Pikovskaya's agar, selective for P-solubilizing microbes [10].

Plant Growth Assessment

Maize (Zea mays) was grown in field plots and microcosms for 60 days. Plant P uptake, shoot biomass, and root length

were measured. Drought stress was monitored using soil moisture sensors, and plant water status was assessed via leaf relative water content (RWC) [11].

Statistical Analysis

ANOVA was used to evaluate the effects of drought and PSM inoculation on soluble P, microbial properties, and plant growth, with Tukey's test for post-hoc comparisons (p < 0.05). Pearson's correlation coefficient (r) was calculated to assess relationships between soluble P and microbial parameters $^{[12]}$.

Results

Phosphorus Solubilization

PSM inoculation significantly enhanced soluble P under drought conditions (Table 1). In Mediterranean soils, *Bacillus subtilis* increased soluble P by 25% under moderate drought and 20% under severe drought compared to controls (p < 0.01). In semi-arid soils, *Pseudomonas fluorescens* boosted soluble P by 35% under moderate drought and 28% under severe drought [13]. Non-inoculated soils showed minimal increases in soluble P under drought stress.

Table 1: Soluble Phosphorus (mg kg⁻¹) Under Drought and PSM Inoculation

Region	Drought Level	Control	Bacillus subtilis	Pseudomonas fluorescens
Mediterranean	Control	8.5	10.2	11.0
	Moderate	6.8	8.5	9.1
	Severe	5.2	6.2	6.5
Semi-arid	Control	7.8	9.5	10.5
	Moderate	6.0	7.5	8.1
	Severe	4.8	5.8	6.3

Microbial Biomass and Enzyme Activity

Drought reduced microbial biomass carbon (MBC) by 30–40% in Mediterranean soils and 25–35% in semi-arid soils under severe conditions (Table 2). PSM inoculation mitigated

these losses, increasing MBC by 15–20% compared to controls ^[14]. Phosphatase activity decreased by 35% under severe drought but was 10–15% higher in PSM-inoculated soils ^[9].

Table 2: Microbial Biomass Carbon (mg kg⁻¹) Under Drought and PSM Inoculation

Region	Drought Level	Control	Bacillus subtilis	Pseudomonas fluorescens
Mediterranean	Control	250	290	300
	Moderate	200	230	240
	Severe	150	180	185
Semi-arid	Control	220	260	270
	Moderate	180	210	220
	Severe	140	165	170

Plant Growth Responses

PSM inoculation improved maize P uptake by 20–30% under moderate drought and 15–25% under severe drought (Table 3). Shoot biomass increased by 15% in Mediterranean soils

and 18% in semi-arid soils with *Pseudomonas fluorescens* under moderate drought ^[15]. Root length was enhanced by 10–12% in PSM-inoculated plots, and leaf relative water content (RWC) was 5–8% higher compared to controls ^[11].

Table 3: Plant Phosphorus Uptake (mg plant⁻¹) Under Drought and PSM Inoculation

Region	Drought Level	Control	Bacillus subtilis	Pseudomonas fluorescens
Mediterranean	Control	45	55	58
	Moderate	35	42	45
	Severe	28	33	35
Semi-arid	Control	40	50	53
	Moderate	32	39	42
	Severe	25	30	32

Discussion

PSM Performance Under Drought

The significant increase in soluble P by Bacillus subtilis and

Pseudomonas fluorescens under drought conditions underscores their ability to produce organic acids and phosphatases, which solubilize fixed P forms [3].

Journal of Soil Future Research www.soilfuturejournal.com

Pseudomonas fluorescens exhibited slightly higher efficacy, likely due to its versatile metabolic pathways and stress tolerance ^[16]. The 20–35% increase in soluble P aligns with studies on drought-tolerant PSM strains, highlighting their potential in water-stressed environments ^[5].

Microbial Biomass and Enzyme Activity

Drought-induced reductions in MBC and phosphatase activity reflect suppressed microbial function due to water limitation $^{[9]}$. PSM inoculation mitigated these effects, likely through mechanisms such as exopolysaccharide production, which enhances microbial survival under stress $^{[14]}$. The strong correlation between soluble P and MBC (r = 0.75, p < 0.01) indicates that microbial biomass is a key driver of P solubilization, supporting previous findings $^{[12]}$.

Plant Growth Benefits

Enhanced P uptake and biomass in PSM-inoculated plants demonstrate improved nutrient availability under drought ^[15]. The increase in root length suggests that PSMs stimulate root development, facilitating better water and nutrient acquisition ^[11]. These results advocate for PSM use in drought-prone regions to enhance crop resilience.

Management Implications

Incorporating PSMs into biofertilizers can reduce dependence on chemical P fertilizers, promoting sustainable agriculture in drought-affected regions [10]. Selecting strains like *Pseudomonas fluorescens* for semi-arid soils could optimize P solubilization. However, practical applications must address PSM survival and integration with soil moisture management practices.

Limitations

The study focused on two PSM species, potentially overlooking the contributions of broader microbial diversity. Simulated drought conditions may not fully capture natural variability, and long-term PSM effects require further investigation. Future research should explore multi-strain consortia and their persistence across drought cycles.

Conclusion

Phosphorus-solubilizing microorganisms, such as *Bacillus subtilis* and *Pseudomonas fluorescens*, significantly enhance P availability under drought conditions, increasing soluble P by 20–35% and supporting plant growth. While drought reduces microbial biomass and enzyme activity, PSM inoculation mitigates these impacts, offering a sustainable approach to improve crop resilience in water-limited environments. Further studies are needed to optimize PSM applications and evaluate their long-term efficacy in diverse agroecosystems.

References

- 1. Richardson AE, Simpson RJ. Soil microorganisms mediating phosphorus availability. Plant Physiology. 2011;156(3):989-996.
- 2. Schimel JP, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88(6):1386-1394.
- 3. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2013;2:587.

4. Sardans J, Peñuelas J. Drought decreases soil enzyme activity in Mediterranean ecosystems. Soil Biology and Biochemistry. 2005;37(10):1925-1937.

- 5. Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A. Enhancement of drought tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research. 2016;184:13-24.
- 6. Panagos P, Borrelli P, Meusburger K, *et al.* Soil erosion in Europe: Current status, challenges, and future perspectives. Science of the Total Environment. 2020;737:139719.
- 7. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development. 2009;29(1):185-212.
- 8. Olsen SR, Sommers LE. Phosphorus. In: Page AL, editor. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. Madison: American Society of Agronomy; c1982. p. 403-430.
- 9. Burns RG, DeForest JL, Marxsen J, *et al.* Soil enzymes in a changing environment. Soil Biology and Biochemistry. 2013;58:216-234.
- 10. Pikovskaya RI. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya. 1948;17:362-370.
- 11. Lawlor DW, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment. 2002;25(2):275-294.
- 12. Allison SD, Vitousek PM. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry. 2005;37(5):937-944.
- 13. Khan MS, Zaidi A, Wani PA. Role of phosphate-solubilizing microorganisms in sustainable agriculture. Agronomy for Sustainable Development. 2007;27(1):29-43.
- 14. Nannipieri P, Giagnoni L, Renella G, *et al.* Soil enzymology: Classical and molecular approaches. Biology and Fertility of Soils. 2012;48(7):743-762.
- 15. Glick BR. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. 2012;2012:963401.