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Abstract 
Precision nutrient management optimizes fertilizer application to enhance crop 
productivity while minimizing environmental impacts. This study explores the 
integration of artificial intelligence (AI) with soil and plant sensors to monitor and 
manage nitrogen (N) and phosphorus (P) in temperate and semi-arid agricultural 
systems. Field experiments evaluated AI-driven sensors for real-time nutrient 
monitoring, coupled with machine learning models to predict crop nutrient needs. 
Results showed that AI-integrated systems improved nutrient use efficiency (NUE, 
PUE) by 15–25% and reduced fertilizer inputs by 20–30% compared to conventional 
methods. Soil microbial activity and crop yields were enhanced, particularly in 
temperate soils. These findings highlight the potential of AI-integrated sensors for 
sustainable agriculture, though challenges include high initial costs and data 
calibration needs. 
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Introduction 
Precision nutrient management aims to deliver the right amount of nutrients to crops at the right time and place, improving yield 
and reducing environmental losses [1]. Traditional fertilization practices often lead to over-application, causing nutrient leaching, 
greenhouse gas emissions, and soil degradation [2]. Artificial intelligence (AI) integrated with sensors offers a transformative 
approach by enabling real-time monitoring of soil and plant nutrient status, optimizing fertilizer application through predictive 
modeling [3]. 
Soil sensors measure parameters like nitrate, phosphate, and moisture, while plant sensors assess nutrient uptake via spectral 
signatures [4]. AI algorithms, such as machine learning (ML) models, analyze sensor data to predict crop nutrient demands and 
guide application [5]. This study evaluates AI-integrated sensors for precision nutrient management in temperate and semi-arid 
agricultural systems. The objectives are to: (1) assess sensor accuracy in nutrient monitoring, (2) evaluate AI-driven fertilizer 
recommendations, and (3) analyze impacts on soil microbial functions and crop productivity. 
 
Materials and Methods 
Experimental Locations and System Design 
Field experiments were conducted in temperate (Germany) and semi-arid (Morocco) agricultural regions in 2023. Temperate 
soils were loamy (20–30% clay), and semi-arid soils were sandy loam (10–15% clay), with low baseline nutrient levels (5–10 
mg kg⁻¹ Olsen P, 20–30 mg kg⁻¹ mineral N) [6]. AI-integrated systems included soil sensors (nitrate, phosphate, moisture) and 
plant sensors (multispectral for leaf N and P). Sensors were linked to an AI platform using random forest and neural network 
models for nutrient prediction [7]. 
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Field Setup and Sensor Deployment 
Trials involved 60 plots per region (30 AI-managed, 30 
conventional). AI plots used sensors to monitor soil nutrients 
and moisture every 6 hours, with data fed into ML models to 
recommend N and P application rates. Conventional plots 
followed standard fertilizer schedules (150 kg N ha⁻¹, 50 kg 
P ha⁻¹) [8]. Wheat (Triticum aestivum) was grown for 90 days. 
Sensors were calibrated using laboratory data (colorimetric 
analysis for N and P) [9]. 
 
Soil and Microbial Analyses 
Soil samples were collected from the top 20 cm to measure 
nutrient levels (NH₄⁺-N, NO₃⁻-N, Olsen P) via colorimetric 
methods [10]. Microbial biomass carbon (MBC) was 
quantified using the fumigation-extraction method, and 
enzyme activities (β-glucosidase, phosphatase) were 
measured using p-nitrophenyl substrates, expressed as µmol 
product g⁻¹ soil h⁻¹ [11]. Microbial community composition 
was assessed via 16S rRNA gene sequencing [12]. 
 
Crop and Nutrient Use Efficiency 
Wheat yield, nutrient uptake (N, P), and nutrient use 
efficiency (NUE, PUE) were measured at harvest. NUE and 

PUE were calculated as the ratio of nutrient uptake to applied 
fertilizer [13]. Soil moisture and pH were monitored to assess 
environmental influences. 
 
Statistical Analysis 
ANOVA was used to compare nutrient levels, microbial 
parameters, and crop responses between AI and conventional 
systems, with Tukey’s test for post-hoc comparisons (p < 
0.05). Pearson’s correlation coefficient (r) was calculated to 
evaluate relationships between sensor data and nutrient 
uptake [14]. ML model accuracy was assessed using R² and 
root mean square error (RMSE). 
 
Results 
Sensor Accuracy and Nutrient Monitoring 
AI-integrated sensors accurately monitored soil nutrients, 
with R² values of 0.90 for NO₃⁻-N and 0.87 for Olsen P in 
temperate soils, and 0.85 and 0.82 in semi-arid soils (Table 
1). RMSE values were 2.5 mg kg⁻¹ for NO₃⁻-N and 1.8 mg 
kg⁻¹ for Olsen P. AI systems reduced fertilizer inputs by 20–
30% (N: 105–120 kg ha⁻¹; P: 35–40 kg ha⁻¹) compared to 
conventional systems [15]. 

 
Table 1: Sensor Accuracy for Nutrient Monitoring 

 

Region Nutrient R² RMSE (mg kg⁻¹) AI Fertilizer Input (kg ha⁻¹) Conventional Input (kg ha⁻¹) 

Temperate NO₃⁻-N 0.90 2.5 120 150 
Olsen P 0.87 1.8 40 50 

Semi-arid NO₃⁻-N 0.85 3.0 105 150 
Olsen P 0.82 2.0 35 50 

 
Microbial Biomass and Enzyme Activity 
AI-managed plots showed higher MBC (280–320 mg kg⁻¹) 
than conventional plots (220–250 mg kg⁻¹) in temperate soils, 
with a 10–15% increase in semi-arid soils (Table 2). β-

glucosidase and phosphatase activities were 15–20% higher 
in AI plots in temperate soils, reflecting enhanced carbon and 
phosphorus cycling [16]. Semi-arid soils showed smaller 
increases (5–10%) due to moisture limitations [17]. 

 
Table 2: Microbial Biomass and Enzyme Activities 

 

Region System MBC (mg kg⁻¹) β-Glucosidase (µmol g⁻¹ h⁻¹) Phosphatase (µmol g⁻¹ h⁻¹) 

Temperate Conventional 240 50 35 
AI-Managed 300 60 42 

Semi-arid Conventional 200 40 30 
AI-Managed 220 44 33 

 
Crop Responses and Nutrient Use Efficiency 
AI-managed plots improved NUE and PUE by 15–25% in 
temperate soils (NUE: 70%; PUE: 65%) compared to 
conventional systems (NUE: 55%; PUE: 50%) (Table 3). 

Wheat yield increased by 10–12% in temperate AI plots (7.2 
t ha⁻¹ vs. 6.5 t ha⁻¹) but only 5% in semi-arid plots. Nutrient 
uptake was strongly correlated with sensor data (r = 0.80) for 
N, 0.75 for P, p< 0.01) [14].

 
Table 3: Crop Nutrient Uptake and Yield 

 

Region System NUE (%) PUE (%) Wheat Yield (t ha⁻¹) N Uptake (kg ha⁻¹) P Uptake (kg ha⁻¹) 

Temperate Conventional 55 50 6.5 82 25 
AI-Managed 70 65 7.2 84 26 

Semi-arid Conventional 50 45 5.5 75 22 
AI-Managed 58 52 5.8 77 23 

 
Discussion 
Sensor Accuracy and AI Performance 
AI-integrated sensors provided high accuracy in nutrient 
monitoring, with R² values indicating robust predictions [15]. 
The random forest and neural network models effectively 
translated sensor data into fertilizer recommendations, 
reducing inputs by 20–30% while maintaining yields [7]. 
Lower accuracy in semi-arid soils may be due to variable soil 
moisture, which affects sensor performance [17]. These results 

align with studies on precision agriculture, highlighting AI’s 
role in optimizing nutrient delivery [3]. 
 
Microbial Function Impacts 
Higher MBC and enzyme activities in AI-managed plots 
reflect improved nutrient availability and reduced over-
fertilization stress [16]. Enhanced β-glucosidase and 
phosphatase activities suggest that AI systems support carbon 
and phosphorus cycling by aligning fertilizer inputs with 
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microbial demands [11]. Limited responses in semi-arid soils 
underscore the role of moisture in microbial activity, as water 
scarcity restricts nutrient diffusion. 
 
Crop Productivity and Nutrient Efficiency 
Improved NUE and PUE in AI-managed plots demonstrate 
the efficacy of real-time nutrient management [13]. The 10–
12% yield increase in temperate soils reflects optimized 
nutrient timing and rates, while smaller gains in semi-arid 
soils indicate environmental constraints. Strong correlations 
between sensor data and nutrient uptake validate the use of 
AI-integrated sensors for precision agriculture [14]. 
 
Management Implications 
AI-integrated sensors can reduce fertilizer waste and 
environmental impacts, making them ideal for sustainable 
agriculture [3]. In temperate systems, widespread adoption 
could enhance soil health and yields [15]. In semi-arid regions, 
combining sensors with irrigation management is critical to 
maximize benefits. Training farmers on AI tools and ensuring 
affordable sensor technologies are essential for scalability. 
 
Limitations 
High initial costs of AI-integrated sensors may limit 
adoption, particularly in resource-constrained regions [17]. 
Calibration requirements for diverse soil types and climates 
pose challenges [7]. Long-term impacts on microbial diversity 
and soil health need further investigation [14]. Future research 
should focus on cost-effective sensors and broader 
agroecological applications. 
 
Conclusion 
AI-integrated sensors enhance precision nutrient 
management by improving nutrient monitoring, reducing 
fertilizer inputs, and supporting soil microbial functions. 
Temperate soils benefit most, with higher microbial biomass, 
enzyme activities, and crop yields, while semi-arid soils 
require moisture management to maximize outcomes. These 
technologies offer a sustainable approach to agriculture but 
face challenges in cost and calibration. Further research is 
needed to optimize AI systems and ensure accessibility 
across diverse farming systems. 
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