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Article Info Abstract

Soil mapping is a cornerstone of precision agriculture, environmental management,
and sustainable land use. Traditional methods, reliant on physical sampling, are labor-
intensive and struggle to capture the three-dimensional variability of soil properties.
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Introduction

Soil properties such as texture, organic matter, and moisture content exhibit significant spatial variability, both laterally and
vertically, impacting agricultural productivity and environmental sustainability ['l. Accurate 3D mapping of these properties is
critical for optimizing irrigation, fertilization, and land management practices . Traditional soil mapping, which involves
physical sampling and laboratory analysis, is resource-intensive and limited in capturing fine-scale subsurface variations B1.
Recent advances in deep learning, particularly 3D Convolutional Neural Networks (3D-CNNs), offer a transformative approach
by processing volumetric geophysical data to predict soil properties in three dimensions ™,

3D-CNNs extend traditional 2D-CNNs by incorporating depth, enabling the analysis of complex spatial patterns in volumetric
datasets [*!. In soil science, 3D-CNNs can integrate data from geophysical tools like GPR and ERT to model subsurface soil
heterogeneity [¢. This article details the application of 3D-CNNs for high-resolution soil mapping in an agricultural field,
discussing methodology, performance, challenges, and future directions.

Materials and Methods

Study Area

The study was conducted in a 100-hectare agricultural field in Iowa, USA, with loamy soils exhibiting variability in texture,
organic matter, and moisture. The site was chosen for its diverse soil properties and access to geophysical survey equipment.

Data Collection

Soil samples were collected at 50 locations across the field at depths of 0-30 cm, 30—-60 cm, and 60—90 cm. Laboratory analysis
determined sand, silt, and clay percentages, organic matter content, and moisture levels using standard protocols [!. Geophysical
data were acquired using a 500 MHz GPR system and ERT surveys, providing 3D datasets of subsurface properties. GPR offered
high-resolution images of soil layers, while ERT data correlated with soil moisture and clay content due to variations in electrical
conductivity [#1,
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Data Preprocessing

Geophysical datasets were preprocessed to remove noise and
aligned with soil sampling points. GPR and ERT data were
interpolated to a 1 m x 1 m x 0.1 m grid, creating a uniform
3D input volume. Soil sample data served as ground truth
labels. Data augmentation techniques, including rotation and
scaling, enhanced dataset robustness. The dataset was split
into 70% training, 15% validation, and 15% testing subsets.

3D-CNN Model Architecture

The 3D-CNN model comprised four convolutional layers,
each followed by batch normalization and ReLU activation,
with max-pooling layers to reduce spatial dimensions. Fully
connected layers predicted soil properties (sand, silt, clay
percentages, organic matter, and moisture content). The input
was a 100 x 100 x 30 voxel grid, implemented in
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TensorFlow, and trained using the Adam optimizer (learning
rate: 0.001) over 100 epochs.

Model Training and Validation

Training was performed on a GPU-enabled system to manage
the computational demands of 3D convolutions. Performance
was evaluated using mean squared error (MSE) for regression
tasks and accuracy for categorical texture predictions. K-fold
cross-validation (k=5) ensured model robustness.

Results

The 3D-CNN model demonstrated robust performance in
predicting soil properties. Soil texture classification achieved
92% accuracy (MSE: 0.015), organic matter predictions
reached 88% accuracy (MSE: 0.022), and moisture content
predictions attained 85% accuracy (MSE: 0.028). Figure 1
shows the predicted versus actual soil texture distribution at
30-60 cm depth, indicating strong correlation (R? = 0.91).
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Fig 1: Predicted vs. Actual Soil Texture (30-60 cm Depth)
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Fig 2: 3D Soil Moisture Map
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Table 1 summarizes the model’s performance across soil
properties, while Table 2 details the performance by depth,
revealing slight declines in deeper layers due to reduced
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geophysical signal penetration. Table 3 compares the 3D-
CNN model with traditional methods, highlighting its
superior accuracy and coverage.

Table 1: Performance Metrics of 3D-CNN Model

Soil Property Accuracy (%) MSE R?
Texture (Sand) 92 0.015 0.91
Texture (Silt) 92 0.014 0.92
Texture (Clay) 91 0.016 0.90
Organic Matter 88 0.022 0.87
Moisture Content 85 0.028 0.84

Table 2: Model Performance by Depth

Depth (cm) | Texture Accuracy (%) | Organic Matter Accuracy (%) | Moisture Accuracy (%)
0-30 94 90 88
30-60 92 88 85
60-90 89 85 82

Table 3: Comparison with Traditional Methods

Method Accuracy (%) Spatial Coverage Time (Days)
3D-CNN 92 Continuous 3D 2
Physical Sampling 85 Discrete Points 10
2D Interpolation 80 2D Surface 5

Discussion

The 3D-CNN model’s high accuracy underscores its potential
for non-invasive, high-resolution soil mapping . By
integrating GPR and ERT data, the model captures
subsurface variability that traditional methods miss *l. The
strong performance in texture prediction reflects the model’s
ability to learn complex spatial patterns from geophysical
inputs 1. However, the slightly lower accuracy for moisture
content may stem from its temporal variability, which
geophysical data alone may not fully capture ('),

Challenges include the computational intensity of 3D-CNNss,
requiring GPU infrastructure, and the need for extensive
ground truth data "', Future improvements could involve
transfer learning to reduce data requirements and integration
with satellite-based remote sensing for broader coverage. The
model’s scalability makes it promising for precision
agriculture, enabling site-specific management practices.
However, geophysical equipment costs may limit adoption in
resource-constrained regions [2],

Conclusion

This study demonstrates the effectiveness of 3D-CNNs in
generating high-resolution 3D soil maps, achieving
accuracies of 92% for texture, 88% for organic matter, and
85% for moisture content. By leveraging geophysical data,
3D-CNNs offer a scalable, non-invasive alternative to
traditional soil mapping. Despite challenges like
computational demands and data needs, the technology holds
significant potential for precision agriculture and
environmental management. Future research should focus on
integrating multi-source data and optimizing models for real-
time applications.
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