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Article Info Abstract _ - _ _ _
Soil organic carbon (SOC) is a critical component of soil health, influencing

agricultural productivity, carbon sequestration, and climate change mitigation.

P - ISSN: 3051-3448 Accurate SOC prediction over large areas is challenging due to spatial variability and
E - ISSN: 3051-3456 the limitations of traditional soil sampling. This article investigates the use of
Volume: 05 ensemble machine learning models, integrating remote s_ensing data, to predict SOC
Issue: 02 content across a 500-hectare agricultural region in Saskatchewan, Canada.

’ Multispectral satellite imagery from Sentinel-2, combined with topographic and
July -December 2024 climatic data, was used to train ensemble models, including Random Forest, Gradient
Received: 25-06-2024 Boosting, and XGBoost. The models achieved an average R? of 0.89 and a root mean
Accepted: 19-07-2024 square error (RMSE) of 0.31% for SOC prediction. Results demonstrate the

; . superiority of ensemble methods over single-model approaches, with Random Forest
Published: 03-08-2024 outperforming others in accuracy and robustness. Challenges such as data resolution
Page No: 11-13 and model interpretability are discussed, alongside future directions for integrating

hyperspectral data and deep learning.
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Introduction

Soil organic carbon (SOC) is a key indicator of soil fertility, ecosystem health, and carbon sequestration potential [, Accurate
SOC mapping is vital for optimizing agricultural practices, assessing carbon storage, and supporting climate change mitigation
strategies @, Traditional SOC measurement relies on field sampling and laboratory analysis, which are costly, time-consuming,
and limited in spatial coverage [l. Remote sensing, combined with machine learning, offers a scalable solution for SOC
prediction by leveraging spectral, topographic, and climatic data 1.

Ensemble machine learning models, such as Random Forest, Gradient Boosting, and XGBoost, combine multiple algorithms to
improve predictive accuracy and robustness Bl. These models are particularly effective for handling complex, non-linear
relationships in remote sensing data 1. This article presents a study on SOC prediction using ensemble models driven by
Sentinel-2 multispectral imagery, topographic indices, and climatic variables. The methodology, performance, challenges, and
future prospects are discussed in detail.

Materials and Methods

Study Area

The study was conducted in a 500-hectare agricultural region in Saskatchewan, Canada, characterized by Chernozemic soils
with varying SOC levels (1-5%). The area was selected for its diverse land use (cropland and pasture) and availability of remote
sensing data.

Data Collection

Soil samples were collected at 100 locations across the study area at a depth of 0—20 cm, following a stratified random sampling
design. SOC content was determined using the Walkley-Black method [,
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Remote sensing data were acquired from Sentinel-2 satellite
imagery (10 m resolution) for 2024, including bands B2
(blue), B3 (green), B4 (red), B8 (near-infrared), and B11
(short-wave infrared). Derived indices, such as the
Normalized Difference Vegetation Index (NDVI) and Soil
Adjusted Vegetation. Index (SAVI), were calculated.
Topographic data, including elevation, slope, and aspect,
were obtained from a digital elevation model (DEM) at 10 m
resolution. Climatic data, including annual precipitation and
temperature, were sourced from a regional weather station [,

Data Preprocessing

Remote sensing data were preprocessed to correct for
atmospheric effects and cloud cover using the Sen2Cor
algorithm. All datasets were resampled to a 10 m x 10 m grid
and aligned with soil sampling points. Missing values were
imputed using k-nearest neighbors, and features were
normalized to a 0-1 scale. The dataset was split into 70%
training, 15% validation, and 15% testing subsets. Feature
selection was performed using recursive feature elimination
to identify the most predictive variables.

Ensemble Models
Three ensemble models were implemented: Random Forest
(RF), Gradient Boosting (GB), and XGBoost (XGB). RF
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used 100 decision trees with a maximum depth of 10. GB was
configured with 200 estimators and a learning rate of 0.1.
XGB was optimized with 150 trees, a learning rate of 0.05,
and early stopping to prevent overfitting. Models were
implemented in Python using scikit-learn and XGBoost
libraries, trained on a GPU-enabled system. Hyperparameters
were tuned using grid search with 5-fold cross-validation.

Model Evaluation

Model performance was evaluated using R?, RMSE, and
mean absolute error (MAE). A baseline linear regression
model was included for comparison. Spatial validation was
conducted by comparing predicted SOC maps with ground
truth measurements at unsampled locations.

Results

The ensemble models outperformed the baseline linear
regression model in SOC prediction. Random Forest
achieved the highest performance with an R2 of 0.91, RMSE
of 0.29%, and MAE of 0.22%. Gradient Boosting followed
with an R2 of 0.89, RMSE of 0.31%, and MAE of 0.25%.
XGBoost yielded an R2 of 0.87, RMSE of 0.34%, and MAE
of 0.27%. The linear regression model had an R? of 0.75,
RMSE of 0.52%, and MAE of 0.41%.
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Table 1: Performance Metrics of Ensemble Models

Model R? RMSE (%) MAE (%)
Random Forest 0.91 0.29 0.22
Gradient Boosting 0.89 0.31 0.25
XGBoost 0.87 0.34 0.27
Linear Regression 0.75 0.52 0.41

Table 2: Feature Importance (Random Forest)

Feature Importance (%)
NDVI 32.5
SAVI 25.8

B11 (SWIR) 18.6
Precipitation 124
Slope 10.7

Table 3: SOC Prediction by Land Use

Land Use Mean Predicted SOC (%) Mean Actual SOC (%) RMSE (%)
Cropland 21 2.2 0.30
Pasture 3.8 3.9 0.28

Discussion

The ensemble models demonstrated high accuracy in SOC
prediction, with Random Forest outperforming Gradient
Boosting and XGBoost due to its robustness to overfitting
and ability to handle high-dimensional data . The scatter
plot in Figure 1 illustrates the tight clustering of predicted
versus actual SOC values, confirming the model’s precision
(101 The spatial map in Figure 2 reveals SOC variability
linked to land use, with higher values in pastures due to
organic matter accumulation I, NDVI and SAVI were the
most influential features, reflecting the strong correlation
between vegetation indices and SOC 21,

Challenges include the 10 m resolution of Sentinel-2 data,
which may miss fine-scale SOC variations, and the
computational cost of ensemble models. Future
improvements could involve hyperspectral imagery for
enhanced spectral resolution and deep learning models for
capturing complex patterns. Model interpretability remains a
concern, as ensemble methods are less transparent than linear
regression. Integrating ground-based sensors and temporal
data could further improve predictions.

Conclusion

This study highlights the efficacy of ensemble models, driven
by remote sensing data, for SOC prediction, achieving an R?
of 0.91 and RMSE of 0.29% with Random Forest. These
models offer a scalable, non-invasive alternative to
traditional soil sampling, with applications in precision
agriculture and carbon sequestration monitoring. Despite
challenges like data resolution and computational demands,
the approach shows significant promise. Future research
should explore hyperspectral data and deep learning to
enhance prediction accuracy and scalability.
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