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Abstract 
Soil organic carbon (SOC) is a critical component of soil health, influencing 
agricultural productivity, carbon sequestration, and climate change mitigation. 
Accurate SOC prediction over large areas is challenging due to spatial variability and 
the limitations of traditional soil sampling. This article investigates the use of 
ensemble machine learning models, integrating remote sensing data, to predict SOC 
content across a 500-hectare agricultural region in Saskatchewan, Canada. 
Multispectral satellite imagery from Sentinel-2, combined with topographic and 
climatic data, was used to train ensemble models, including Random Forest, Gradient 
Boosting, and XGBoost. The models achieved an average R² of 0.89 and a root mean 
square error (RMSE) of 0.31% for SOC prediction. Results demonstrate the 
superiority of ensemble methods over single-model approaches, with Random Forest 
outperforming others in accuracy and robustness. Challenges such as data resolution 
and model interpretability are discussed, alongside future directions for integrating 
hyperspectral data and deep learning. 
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Introduction 

Soil organic carbon (SOC) is a key indicator of soil fertility, ecosystem health, and carbon sequestration potential [1]. Accurate 

SOC mapping is vital for optimizing agricultural practices, assessing carbon storage, and supporting climate change mitigation 

strategies [2]. Traditional SOC measurement relies on field sampling and laboratory analysis, which are costly, time-consuming, 

and limited in spatial coverage [3]. Remote sensing, combined with machine learning, offers a scalable solution for SOC 

prediction by leveraging spectral, topographic, and climatic data [4]. 

Ensemble machine learning models, such as Random Forest, Gradient Boosting, and XGBoost, combine multiple algorithms to 

improve predictive accuracy and robustness [5]. These models are particularly effective for handling complex, non-linear 

relationships in remote sensing data [6]. This article presents a study on SOC prediction using ensemble models driven by 

Sentinel-2 multispectral imagery, topographic indices, and climatic variables. The methodology, performance, challenges, and 

future prospects are discussed in detail. 

 

Materials and Methods 

Study Area 

The study was conducted in a 500-hectare agricultural region in Saskatchewan, Canada, characterized by Chernozemic soils 

with varying SOC levels (1–5%). The area was selected for its diverse land use (cropland and pasture) and availability of remote 

sensing data. 

 

Data Collection 

Soil samples were collected at 100 locations across the study area at a depth of 0–20 cm, following a stratified random sampling 

design. SOC content was determined using the Walkley-Black method [7].  
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Remote sensing data were acquired from Sentinel-2 satellite 

imagery (10 m resolution) for 2024, including bands B2 

(blue), B3 (green), B4 (red), B8 (near-infrared), and B11 

(short-wave infrared). Derived indices, such as the 

Normalized Difference Vegetation Index (NDVI) and Soil 

Adjusted Vegetation. Index (SAVI), were calculated. 

Topographic data, including elevation, slope, and aspect, 

were obtained from a digital elevation model (DEM) at 10 m 

resolution. Climatic data, including annual precipitation and 

temperature, were sourced from a regional weather station [8]. 

 

Data Preprocessing 

Remote sensing data were preprocessed to correct for 

atmospheric effects and cloud cover using the Sen2Cor 

algorithm. All datasets were resampled to a 10 m × 10 m grid 

and aligned with soil sampling points. Missing values were 

imputed using k-nearest neighbors, and features were 

normalized to a 0–1 scale. The dataset was split into 70% 

training, 15% validation, and 15% testing subsets. Feature 

selection was performed using recursive feature elimination 

to identify the most predictive variables. 

 

Ensemble Models 

Three ensemble models were implemented: Random Forest 

(RF), Gradient Boosting (GB), and XGBoost (XGB). RF 

used 100 decision trees with a maximum depth of 10. GB was 

configured with 200 estimators and a learning rate of 0.1. 

XGB was optimized with 150 trees, a learning rate of 0.05, 

and early stopping to prevent overfitting. Models were 

implemented in Python using scikit-learn and XGBoost 

libraries, trained on a GPU-enabled system. Hyperparameters 

were tuned using grid search with 5-fold cross-validation. 

 

Model Evaluation 

Model performance was evaluated using R², RMSE, and 

mean absolute error (MAE). A baseline linear regression 

model was included for comparison. Spatial validation was 

conducted by comparing predicted SOC maps with ground 

truth measurements at unsampled locations. 

 

Results 

The ensemble models outperformed the baseline linear 

regression model in SOC prediction. Random Forest 

achieved the highest performance with an R² of 0.91, RMSE 

of 0.29%, and MAE of 0.22%. Gradient Boosting followed 

with an R² of 0.89, RMSE of 0.31%, and MAE of 0.25%. 

XGBoost yielded an R² of 0.87, RMSE of 0.34%, and MAE 

of 0.27%. The linear regression model had an R² of 0.75, 

RMSE of 0.52%, and MAE of 0.41%. 

 

 
 

Fig 1: Predicted vs. Actual SOC Content 

 

 
 

Fig 2: Spatial SOC Distribution Map 
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Table 1: Performance Metrics of Ensemble Models 
 

Model R² RMSE (%) MAE (%) 

Random Forest 0.91 0.29 0.22 

Gradient Boosting 0.89 0.31 0.25 

XGBoost 0.87 0.34 0.27 

Linear Regression 0.75 0.52 0.41 

 

Table 2: Feature Importance (Random Forest) 
 

Feature Importance (%) 

NDVI 32.5 

SAVI 25.8 

B11 (SWIR) 18.6 

Precipitation 12.4 

Slope 10.7 

 

Table 3: SOC Prediction by Land Use 
 

Land Use Mean Predicted SOC (%) Mean Actual SOC (%) RMSE (%) 

Cropland 2.1 2.2 0.30 

Pasture 3.8 3.9 0.28 

 

Discussion 

The ensemble models demonstrated high accuracy in SOC 

prediction, with Random Forest outperforming Gradient 

Boosting and XGBoost due to its robustness to overfitting 

and ability to handle high-dimensional data [9]. The scatter 

plot in Figure 1 illustrates the tight clustering of predicted 

versus actual SOC values, confirming the model’s precision 
[10]. The spatial map in Figure 2 reveals SOC variability 

linked to land use, with higher values in pastures due to 

organic matter accumulation [11]. NDVI and SAVI were the 

most influential features, reflecting the strong correlation 

between vegetation indices and SOC [12]. 

Challenges include the 10 m resolution of Sentinel-2 data, 

which may miss fine-scale SOC variations, and the 

computational cost of ensemble models. Future 

improvements could involve hyperspectral imagery for 

enhanced spectral resolution and deep learning models for 

capturing complex patterns. Model interpretability remains a 

concern, as ensemble methods are less transparent than linear 

regression. Integrating ground-based sensors and temporal 

data could further improve predictions. 

 

Conclusion 

This study highlights the efficacy of ensemble models, driven 

by remote sensing data, for SOC prediction, achieving an R² 

of 0.91 and RMSE of 0.29% with Random Forest. These 

models offer a scalable, non-invasive alternative to 

traditional soil sampling, with applications in precision 

agriculture and carbon sequestration monitoring. Despite 

challenges like data resolution and computational demands, 

the approach shows significant promise. Future research 

should explore hyperspectral data and deep learning to 

enhance prediction accuracy and scalability. 
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