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Abstract 
Soil salinity poses a significant threat to agricultural productivity and ecosystem 
sustainability in arid landscapes, affecting approximately 833 million hectares 
globally. Traditional soil salinity assessment methods are time-consuming, labor-
intensive, and spatially limited. This study presents a comprehensive AI-based 
approach for mapping soil salinity in arid regions using machine learning algorithms 
integrated with remote sensing data and ground truth measurements. The research was 
conducted across 15,000 km² of arid landscape in the Thar Desert region, combining 
multispectral satellite imagery from Landsat-8 and Sentinel-2 with field-collected 
electrical conductivity measurements from 2,847 sampling points. Four machine 
learning algorithms were evaluated: Random Forest (RF), Support Vector Machine 
(SVM), Artificial Neural Network (ANN), and Gradient Boosting Machine (GBM). 
The Random Forest model demonstrated superior performance with an overall 
accuracy of 89.3%, R² of 0.87, and RMSE of 2.14 dS m⁻¹. Spectral indices including 
Normalized Difference Salinity Index (NDSI), Salinity Index (SI), and Brightness 
Index (BI) emerged as the most influential predictor variables. The developed model 
successfully identified five salinity classes ranging from non-saline (<2 dS m⁻¹) to 
extremely saline (>16 dS m⁻¹) areas. Results revealed that 34.7% of the study area 
exhibited moderate to severe salinity levels, with hotspots concentrated around salt 
lakes and low-lying areas. The AI-based mapping approach provides a cost-effective, 
scalable solution for monitoring soil salinity dynamics in arid regions, supporting 
precision agriculture and land management decisions. 
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1. Introduction 
Soil salinity represents one of the most critical environmental challenges facing global agriculture, particularly in arid and semi-
arid regions where evapotranspiration exceeds precipitation [1]. The accumulation of soluble salts in soil profiles severely impacts 
plant growth, reduces crop yields, and leads to progressive land degradation. Current estimates indicate that soil salinity affects 
approximately 833 million hectares worldwide, with annual economic losses exceeding $27.3 billion [2]. 
Arid landscapes are particularly susceptible to salinization due to limited precipitation, high evaporation rates, poor drainage 
conditions, and intensive irrigation practices [3]. The spatial distribution of soil salinity in these regions exhibits high 
heterogeneity, influenced by topography, groundwater depth, soil texture, and anthropogenic activities. Traditional approaches 
for salinity assessment rely on point-based measurements of electrical conductivity (EC), which provide accurate but spatially 
limited information that is insufficient for landscape-scale monitoring [4]. 

Remote sensing technology offers significant advantages for mapping soil salinity over large areas through the detection of salt-

affected vegetation and bare soil spectral signatures [5]. Multispectral satellite imagery can capture various spectral indices that 

correlate with soil salinity levels, including the Normalized Difference Salinity Index (NDSI), Salinity Index (SI), and various 

vegetation indices. However, the complex relationships between spectral reflectance and soil salinity require advanced analytical 

approaches to extract meaningful information [6]. 
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Artificial Intelligence (AI) and machine learning algorithms 

have revolutionized environmental monitoring by enabling 

the analysis of complex, non-linear relationships between 

multiple variables [7]. Various machine learning techniques, 

including Random Forest, Support Vector Machines, and 

Artificial Neural Networks, have demonstrated superior 

performance in soil property prediction compared to 

traditional statistical methods. These algorithms can 

effectively integrate multiple data sources, handle non-linear 

relationships, and provide spatially explicit predictions with 

uncertainty estimates [8]. 

The integration of AI with remote sensing data presents 

unprecedented opportunities for developing robust, scalable 

soil salinity mapping systems. Machine learning algorithms 

can automatically identify optimal combinations of spectral 

bands and indices, reducing the subjectivity inherent in 

traditional approaches while improving prediction accuracy 
[9]. Furthermore, AI-based models can be continuously 

updated with new data, ensuring temporal relevance and 

adaptability to changing environmental conditions. 

Despite the growing interest in AI-based soil salinity 

mapping, limited research has focused specifically on arid 

landscapes where salinity patterns are most complex and 

dynamic. Most existing studies have concentrated on 

irrigated agricultural areas or coastal regions, leaving 

significant knowledge gaps regarding salinity mapping in 

natural arid ecosystems [10]. This research addresses these 

limitations by developing and validating a comprehensive 

AI-based approach for soil salinity mapping in arid 

landscapes. 

The primary objective of this study was to develop an 

accurate, cost-effective AI-based system for mapping soil 

salinity in arid regions using machine learning integration of 

remote sensing data and ground truth measurements. Specific 

aims included: (1) evaluating the performance of multiple 

machine learning algorithms for salinity prediction, (2) 

identifying the most influential spectral variables for salinity 

mapping, (3) generating high-resolution salinity maps for 

decision support, and (4) assessing the spatial distribution and 

severity of soil salinity across the study landscape. 

 

Materials and Methods 

Study Area 

The research was conducted in the Thar Desert region of 

Rajasthan, India (25°30'N to 28°45'N, 69°30'E to 72°15'E), 

encompassing approximately 15,000 km² of arid landscape. 

The area is characterized by extremely arid climate with 

mean annual precipitation of 150-300 mm, potential 

evapotranspiration exceeding 1,800 mm, and mean annual 

temperature of 26.4 °C. The landscape features undulating 

sand dunes, salt lakes (playas), scattered vegetation, and 

patches of agricultural land supported by groundwater 

irrigation. 

Soils in the region are predominantly sandy to sandy loam 

with low organic matter content (0.2-0.8%), varying pH 

levels (7.2-9.1), and electrical conductivity ranging from 0.5 

to 45.8 dS m⁻¹. The geological formation consists of alluvial 

deposits with occasional limestone and sandstone outcrops. 

Groundwater depth varies from 5-80 meters, with quality 

ranging from fresh to highly saline (EC: 0.8-28.5 dS m⁻¹). 

 

Remote Sensing Data Acquisition and Processing 

Multispectral satellite imagery was acquired from two 

primary sources: Landsat-8 Operational Land Imager (OLI) 

and Sentinel-2 MultiSpectral Instrument (MSI). A total of 24 

cloud-free images were selected covering the study period 

from October 2020 to May 2023, ensuring representation of 

different seasonal conditions. Image selection criteria 

included cloud cover <5%, optimal sun elevation angles 

(>30°), and temporal alignment with field sampling 

campaigns. 

Landsat-8 imagery provided 30-meter spatial resolution in 

seven spectral bands (Blue: 450-510 nm, Green: 530-590 nm, 

Red: 640-670 nm, Near-infrared: 850-880 nm, SWIR1: 1570-

1650 nm, SWIR2: 2110-2290 nm). Sentinel-2 data offered 

higher spatial resolution (10-20 meters) across thirteen 

spectral bands, including additional red-edge bands crucial 

for vegetation analysis. 

Preprocessing procedures included atmospheric correction 

using the Dark Object Subtraction (DOS) method, geometric 

correction to UTM Zone 43N coordinate system, and 

radiometric calibration to surface reflectance values. Cloud 

masking was performed using quality assessment bands, and 

temporal compositing techniques were applied to generate 

seamless coverage across the study area. 

 

Spectral Index Calculation 

Fifteen spectral indices related to soil salinity, vegetation 

health, and soil moisture were calculated from the 

preprocessed imagery (Table 1). These indices were selected 

based on their proven effectiveness in previous salinity 

mapping studies and their physical relevance to salt-affected 

environments. 

 

Table 1: Spectral indices used for soil salinity mapping 
 

Index Formula Reference Physical Significance 

NDSI (R - NIR) / (R + NIR) Khan et al. (2005) Salt crystal reflectance 

SI-1 √(B × R) Douaoui et al. (2006) Soil brightness 

SI-2 √(G² + R² + NIR²) Abbas et al. (2013) Combined spectral response 

BI √(R² + NIR²) / 2 Richardson & Wiegand (1977) Soil brightness 

NDVI (NIR - R) / (NIR + R) Rouse et al. (1974) Vegetation vigor 

SAVI ((NIR - R) / (NIR + R + 0.5)) × 1.5 Huete (1988) Soil-adjusted vegetation 

EVI 2.5 × ((NIR - R) / (NIR + 6R - 7.5B + 1)) Liu & Huete (1995) Enhanced vegetation 

NDMI (NIR - SWIR1) / (NIR + SWIR1) Gao (1996) Moisture content 

 

Ground Truth Data Collection 

Extensive field sampling campaigns were conducted during 

October-November 2020, 2021, and 2022 to collect ground 

truth data for model training and validation. A stratified 

random sampling design was employed to ensure 

representative coverage across different landscape units, 

vegetation types, and elevation gradients. Sampling points 

were positioned using differential GPS with sub-meter 

accuracy. 
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At each sampling location, soil samples were collected from 

0-30 cm depth using a soil auger, with five sub-samples 

composited within a 30×30 meter area corresponding to 

Landsat pixel size. A total of 2,847 sampling points were 

established across the study area, with an average density of 

0.19 points per km². Electrical conductivity of saturated paste 

extracts (ECe) was measured using a calibrated conductivity 

meter following standard protocols. 

Additional environmental variables recorded at each site 

included: GPS coordinates, elevation, slope, aspect, land 

cover type, vegetation density, surface salt crusts presence, 

and soil texture class. Meteorological data including 

temperature, humidity, and precipitation were obtained from 

nearby weather stations for temporal correlation analysis. 

 

Machine Learning Algorithm Implementation 

Four machine learning algorithms were implemented and 

compared for soil salinity prediction: Random Forest (RF), 

Support Vector Machine (SVM), Artificial Neural Network 

(ANN), and Gradient Boosting Machine (GBM). The dataset 

was randomly divided into training (70%, n=1,993) and 

testing (30%, n=854) subsets, maintaining proportional 

representation across salinity classes. 

Random Forest implementation utilized 500 decision trees 

with maximum depth of 10 and minimum samples per leaf of 

5. Feature importance was calculated using mean decrease in 

impurity. Support Vector Machine employed radial basis 

function kernel with gamma and C parameters optimized 

through grid search cross-validation. The Artificial Neural 

Network architecture consisted of three hidden layers with 

64, 32, and 16 neurons respectively, using ReLU activation 

functions and Adam optimizer. Gradient Boosting Machine 

was configured with 100 estimators, learning rate of 0.1, and 

maximum depth of 6. 

Model performance was evaluated using multiple metrics 

including coefficient of determination (R²), root mean square 

error (RMSE), mean absolute error (MAE), and overall 

classification accuracy for categorical salinity classes. Ten-

fold cross-validation was performed to assess model stability 

and generalization capability. 

 

Salinity Classification and Mapping 

Predicted EC values were classified into five salinity classes 

following FAO guidelines: non-saline (0-2 dS m⁻¹), slightly 

saline (2-4 dS m⁻¹), moderately saline (4-8 dS m⁻¹), strongly 

saline (8-16 dS m⁻¹), and extremely saline (>16 dS m⁻¹). 

High-resolution salinity maps were generated at 30-meter 

spatial resolution covering the entire study area. 

 

Results 

Model Performance Comparison 

All four machine learning algorithms demonstrated good 

performance for soil salinity prediction, with accuracy 

varying based on algorithm characteristics and data 

complexity (Table 2). Random Forest achieved the highest 

overall performance with R² of 0.87, RMSE of 2.14 dS m⁻¹, 

and classification accuracy of 89.3%. Gradient Boosting 

Machine showed comparable performance (R² = 0.84, RMSE 

= 2.47 dS m⁻¹), while Support Vector Machine and Artificial 

Neural Network exhibited slightly lower but acceptable 

accuracies. 

 

Table 2: Performance comparison of machine learning algorithms for soil salinity prediction 
 

Algorithm R² RMSE (dS m⁻¹) MAE (dS m⁻¹) Classification Accuracy (%) Kappa Coefficient 

Random Forest 0.87 2.14 1.63 89.3 0.84 

Gradient Boosting 0.84 2.47 1.89 86.7 0.81 

Support Vector Machine 0.79 2.89 2.15 82.4 0.76 

Artificial Neural Network 0.76 3.12 2.34 79.8 0.72 

 

Feature Importance Analysis 

Random Forest feature importance analysis revealed that 

spectral indices related to soil brightness and salt reflectance 

were most influential for salinity prediction (Figure 1). The 

Normalized Difference Salinity Index (NDSI) emerged as the 

most important variable, contributing 18.7% to model 

predictions. Salinity Index-1 (SI-1) and Brightness Index (BI) 

ranked second and third with contributions of 14.2% and 

12.8% respectively. 

 

 
 

Fig 1: Feature importance ranking for Random Forest model 
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Vegetation indices (NDVI, SAVI, EVI) showed moderate 

importance, indicating their indirect relationship with salinity 

through vegetation stress responses. Individual spectral 

bands, particularly SWIR1 and Red bands, also contributed 

significantly to model performance, suggesting the value of 

incorporating raw spectral information alongside derived 

indices. 

 

Spatial Distribution of Soil Salinity 

The generated salinity map revealed complex spatial patterns 

across the study landscape, with distinct hotspots of high 

salinity concentration (Table 3). Non-saline areas comprised 

31.8% of the total area, primarily located in elevated sandy 

regions with good drainage. Slightly saline conditions 

covered 33.5% of the landscape, representing the most 

extensive category. 
 

Table 3: Spatial distribution of soil salinity classes across the study area 
 

Salinity Class EC Range (dS m⁻¹) Area (km²) Percentage (%) Primary Locations 

Non-saline 0-2 4, 770 31.8 Elevated sand dunes, well-drained areas 

Slightly saline 2-4 5, 025 33.5 Gentle slopes, mixed agriculture 

Moderately saline 4-8 2, 805 18.7 Low-lying areas, poor drainage 

Strongly saline 8-16 1, 740 11.6 Playa margins, groundwater discharge 

Extremely saline >16 660 4.4 Salt lakes, evaporation ponds 

 

Moderately to extremely saline areas accounted for 34.7% of 

the landscape, concentrated around salt lakes (playas), low-

lying depressions, and areas with shallow, saline 

groundwater. The most severely affected regions were 

located in the central and southern portions of the study area, 

where topographic lows and geological constraints create 

conditions favorable for salt accumulation. 

 

Temporal Variations in Salinity Patterns 

Analysis of multi-temporal data revealed seasonal variations 

in salinity distribution, particularly in areas with fluctuating 

groundwater levels. Post-monsoon periods showed reduced 

surface salinity in some regions due to salt leaching, while 

pre-monsoon conditions exhibited maximum salt 

concentration due to intense evaporation. These temporal 

dynamics highlight the importance of considering seasonal 

effects in salinity monitoring programs. 

 

Model Validation and Uncertainty Assessment 

Independent validation using reserved test data confirmed the 

robustness of the Random Forest model across different 

salinity ranges. The model performed best for moderate 

salinity levels (4-8 dS m⁻¹) with minimal bias, while slight 

underestimation occurred in extremely saline conditions (>16 

dS m⁻¹). Uncertainty maps generated through model 

ensemble approaches indicated higher prediction confidence 

in areas with abundant training data and lower uncertainty in 

regions with consistent spectral signatures. 

 

Discussion 

The superior performance of Random Forest for soil salinity 

mapping aligns with previous research demonstrating the 

effectiveness of ensemble methods for environmental 

modeling [11]. The algorithm's ability to handle non-linear 

relationships, reduce overfitting, and provide feature 

importance rankings makes it particularly suitable for 

complex soil-landscape interactions characteristic of arid 

environments. The achieved accuracy of 89.3% compares 

favorably with other studies, considering the challenging 

conditions and extensive spatial coverage of this research. 

The dominance of spectral indices related to soil brightness 

and salt reflectance in the feature importance analysis 

confirms the physical basis of remote sensing-based salinity 

detection. The Normalized Difference Salinity Index (NDSI) 

effectively captures the unique spectral signature of salt-

affected soils, which exhibit higher reflectance in visible 

wavelengths due to salt crystal formations on soil surfaces. 

The combination of multiple indices provides 

complementary information, enhancing model robustness 

across diverse environmental conditions. 

The spatial distribution patterns revealed by the AI-based 

mapping approach demonstrate the complex hydrogeological 

controls on salinity in arid landscapes. The concentration of 

highly saline areas around playas and low-lying regions 

reflects the combined influence of topography, groundwater 

flow patterns, and evaporation processes [12]. These findings 

provide valuable insights for land management decisions, 

irrigation planning, and agricultural development strategies 

in the region. 

The temporal variations observed in salinity patterns 

underscore the dynamic nature of soil salinity in arid 

environments. Seasonal fluctuations in groundwater levels, 

precipitation patterns, and evaporation rates create temporal 

variability that must be considered in monitoring programs. 

The AI-based approach enables cost-effective temporal 

monitoring through automated processing of satellite 

imagery, supporting adaptive management strategies. 

The integration of multiple machine learning algorithms 

provides opportunities for ensemble modeling approaches 

that could further improve prediction accuracy. While 

Random Forest demonstrated superior individual 

performance, combining predictions from multiple 

algorithms might enhance robustness and reduce prediction 

uncertainty, particularly in areas with limited training data or 

complex environmental conditions [13]. 

 

Conclusion 

This study successfully demonstrates the effectiveness of AI-

based approaches for mapping soil salinity in arid landscapes, 

achieving high accuracy through integration of machine 

learning algorithms with remote sensing data. The Random 

Forest model emerged as the most effective approach, 

providing accurate spatial predictions with comprehensive 

uncertainty estimates. The developed methodology offers a 

scalable, cost-effective solution for monitoring soil salinity 

dynamics across large arid regions. 

The identification of spectral indices most relevant to salinity 

detection provides valuable guidance for future remote 

sensing applications in similar environments. The NDSI, SI-

1, and BI indices proved most effective for capturing salt-

affected soil signatures, while vegetation indices provided 

complementary information about indirect salinity effects 

through plant stress responses. 
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The spatial analysis revealed that over one-third of the study 

area exhibits moderate to severe salinity levels, with distinct 

hotspots requiring immediate attention for land management 

interventions. The concentration of highly saline areas 

around topographic lows and salt lakes reflects predictable 

hydrogeological processes that can guide targeted 

remediation efforts. 

Future research directions should focus on incorporating 

temporal dynamics more explicitly in model development, 

exploring deep learning approaches for enhanced pattern 

recognition, and integrating additional environmental 

variables such as groundwater data and soil physical 

properties. The expansion of this methodology to other arid 

regions worldwide could contribute significantly to global 

soil salinity monitoring and sustainable land management 

efforts. 

The AI-based mapping approach developed in this study 

provides a powerful tool for supporting precision agriculture, 

land use planning, and environmental monitoring in arid 

landscapes. The combination of high accuracy, spatial detail, 

and cost-effectiveness makes this methodology particularly 

valuable for developing countries where traditional soil 

survey approaches are often prohibitively expensive or 

logistically challenging. 
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