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Soil salinity poses a significant threat to agricultural productivity and ecosystem
sustainability in arid landscapes, affecting approximately 833 million hectares

P - ISSN: 3051-3448 globally. Traditional soil salinity assessment methods are time-consuming, labor-

E - ISSN: 3051-3456 intensive, and spatially limited. This study presents a comprehensive Al-based
Volume: 05 approach for mapping soil salinity in arid regions using machine learning algorithms
Issue: 02 integrated with remote sensing data and ground truth measurements. The research was

conducted across 15,000 km? of arid landscape in the Thar Desert region, combining

July -December 2024 multispectral satellite imagery from Landsat-8 and Sentinel-2 with field-collected

Received: 08-07-2024 electrical conductivity measurements from 2,847 sampling points. Four machine
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. The Random Forest model demonstrated superior performance with an overall
Page No: 14-18 accuracy of 89.3%, R® of 0.87, and RMSE of 2.14 dS m. Spectral indices including

Normalized Difference Salinity Index (NDSI), Salinity Index (SlI), and Brightness
Index (BI) emerged as the most influential predictor variables. The developed model
successfully identified five salinity classes ranging from non-saline (<2 dS m™) to
extremely saline (>16 dS m™) areas. Results revealed that 34.7% of the study area
exhibited moderate to severe salinity levels, with hotspots concentrated around salt
lakes and low-lying areas. The Al-based mapping approach provides a cost-effective,
scalable solution for monitoring soil salinity dynamics in arid regions, supporting
precision agriculture and land management decisions.
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1. Introduction

Soil salinity represents one of the most critical environmental challenges facing global agriculture, particularly in arid and semi-
arid regions where evapotranspiration exceeds precipitation M. The accumulation of soluble salts in soil profiles severely impacts
plant growth, reduces crop yields, and leads to progressive land degradation. Current estimates indicate that soil salinity affects
approximately 833 million hectares worldwide, with annual economic losses exceeding $27.3 billion 12,

Arid landscapes are particularly susceptible to salinization due to limited precipitation, high evaporation rates, poor drainage
conditions, and intensive irrigation practices [, The spatial distribution of soil salinity in these regions exhibits high
heterogeneity, influenced by topography, groundwater depth, soil texture, and anthropogenic activities. Traditional approaches
for salinity assessment rely on point-based measurements of electrical conductivity (EC), which provide accurate but spatially
limited information that is insufficient for landscape-scale monitoring [,

Remote sensing technology offers significant advantages for mapping soil salinity over large areas through the detection of salt-
affected vegetation and bare soil spectral signatures °I. Multispectral satellite imagery can capture various spectral indices that
correlate with soil salinity levels, including the Normalized Difference Salinity Index (NDSI), Salinity Index (SlI), and various
vegetation indices. However, the complex relationships between spectral reflectance and soil salinity require advanced analytical
approaches to extract meaningful information [,
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Artificial Intelligence (Al) and machine learning algorithms
have revolutionized environmental monitoring by enabling
the analysis of complex, non-linear relationships between
multiple variables 7). Various machine learning techniques,
including Random Forest, Support Vector Machines, and
Artificial Neural Networks, have demonstrated superior
performance in soil property prediction compared to
traditional statistical methods. These algorithms can
effectively integrate multiple data sources, handle non-linear
relationships, and provide spatially explicit predictions with
uncertainty estimates [,

The integration of Al with remote sensing data presents
unprecedented opportunities for developing robust, scalable
soil salinity mapping systems. Machine learning algorithms
can automatically identify optimal combinations of spectral
bands and indices, reducing the subjectivity inherent in
traditional approaches while improving prediction accuracy
Bl Furthermore, Al-based models can be continuously
updated with new data, ensuring temporal relevance and
adaptability to changing environmental conditions.

Despite the growing interest in Al-based soil salinity
mapping, limited research has focused specifically on arid
landscapes where salinity patterns are most complex and
dynamic. Most existing studies have concentrated on
irrigated agricultural areas or coastal regions, leaving
significant knowledge gaps regarding salinity mapping in
natural arid ecosystems [°, This research addresses these
limitations by developing and validating a comprehensive
Al-based approach for soil salinity mapping in arid
landscapes.

The primary objective of this study was to develop an
accurate, cost-effective Al-based system for mapping soil
salinity in arid regions using machine learning integration of
remote sensing data and ground truth measurements. Specific
aims included: (1) evaluating the performance of multiple
machine learning algorithms for salinity prediction, (2)
identifying the most influential spectral variables for salinity
mapping, (3) generating high-resolution salinity maps for
decision support, and (4) assessing the spatial distribution and
severity of soil salinity across the study landscape.

Materials and Methods

Study Area

The research was conducted in the Thar Desert region of
Rajasthan, India (25°30'N to 28°45'N, 69°30'E to 72°15'E),
encompassing approximately 15,000 km? of arid landscape.
The area is characterized by extremely arid climate with
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mean annual precipitation of 150-300 mm, potential
evapotranspiration exceeding 1,800 mm, and mean annual
temperature of 26.4 °C. The landscape features undulating
sand dunes, salt lakes (playas), scattered vegetation, and
patches of agricultural land supported by groundwater
irrigation.

Soils in the region are predominantly sandy to sandy loam
with low organic matter content (0.2-0.8%), varying pH
levels (7.2-9.1), and electrical conductivity ranging from 0.5
to 45.8 dS m™'. The geological formation consists of alluvial
deposits with occasional limestone and sandstone outcrops.
Groundwater depth varies from 5-80 meters, with quality
ranging from fresh to highly saline (EC: 0.8-28.5 dS m™).

Remote Sensing Data Acquisition and Processing
Multispectral satellite imagery was acquired from two
primary sources: Landsat-8 Operational Land Imager (OLI)
and Sentinel-2 MultiSpectral Instrument (MSI). A total of 24
cloud-free images were selected covering the study period
from October 2020 to May 2023, ensuring representation of
different seasonal conditions. Image selection criteria
included cloud cover <5%, optimal sun elevation angles
(>30°), and temporal alignment with field sampling
campaigns.

Landsat-8 imagery provided 30-meter spatial resolution in
seven spectral bands (Blue: 450-510 nm, Green: 530-590 nm,
Red: 640-670 nm, Near-infrared: 850-880 nm, SWIR1: 1570-
1650 nm, SWIR2: 2110-2290 nm). Sentinel-2 data offered
higher spatial resolution (10-20 meters) across thirteen
spectral bands, including additional red-edge bands crucial
for vegetation analysis.

Preprocessing procedures included atmospheric correction
using the Dark Object Subtraction (DOS) method, geometric
correction to UTM Zone 43N coordinate system, and
radiometric calibration to surface reflectance values. Cloud
masking was performed using quality assessment bands, and
temporal compositing techniques were applied to generate
seamless coverage across the study area.

Spectral Index Calculation

Fifteen spectral indices related to soil salinity, vegetation
health, and soil moisture were calculated from the
preprocessed imagery (Table 1). These indices were selected
based on their proven effectiveness in previous salinity
mapping studies and their physical relevance to salt-affected
environments.

Table 1: Spectral indices used for soil salinity mapping

Index Formula Reference Physical Significance
NDSI (R-NIR)/ (R + NIR) Khan et al. (2005) Salt crystal reflectance
SI-1 V(B x R) Douaoui et al. (2006) Soil brightness
Sl-2 V(G* + R? + NIR?) Abbas et al. (2013) Combined spectral response
BI V(RZ + NIR?) / 2 Richardson & Wiegand (1977) Soil brightness
NDVI (NIR-R)/(NIR +R) Rouse et al. (1974) Vegetation vigor
SAVI (NIR-R)/(NIR+R+0.5))x15 Huete (1988) Soil-adjusted vegetation
EVI 25%x((NIR-R)/(NIR+6R-7.5B + 1)) Liu & Huete (1995) Enhanced vegetation
NDMI (NIR - SWIR1) / (NIR + SWIRY) Gao (1996) Moisture content

Ground Truth Data Collection

Extensive field sampling campaigns were conducted during
October-November 2020, 2021, and 2022 to collect ground
truth data for model training and validation. A stratified
random sampling design was employed to ensure

representative coverage across different landscape units,
vegetation types, and elevation gradients. Sampling points
were positioned using differential GPS with sub-meter
accuracy.
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At each sampling location, soil samples were collected from
0-30 cm depth using a soil auger, with five sub-samples
composited within a 30x30 meter area corresponding to
Landsat pixel size. A total of 2,847 sampling points were
established across the study area, with an average density of
0.19 points per km2, Electrical conductivity of saturated paste
extracts (ECe) was measured using a calibrated conductivity
meter following standard protocols.

Additional environmental variables recorded at each site
included: GPS coordinates, elevation, slope, aspect, land
cover type, vegetation density, surface salt crusts presence,
and soil texture class. Meteorological data including
temperature, humidity, and precipitation were obtained from
nearby weather stations for temporal correlation analysis.

Machine Learning Algorithm Implementation

Four machine learning algorithms were implemented and
compared for soil salinity prediction: Random Forest (RF),
Support Vector Machine (SVM), Artificial Neural Network
(ANN), and Gradient Boosting Machine (GBM). The dataset
was randomly divided into training (70%, n=1,993) and
testing (30%, n=854) subsets, maintaining proportional
representation across salinity classes.

Random Forest implementation utilized 500 decision trees
with maximum depth of 10 and minimum samples per leaf of
5. Feature importance was calculated using mean decrease in
impurity. Support Vector Machine employed radial basis
function kernel with gamma and C parameters optimized
through grid search cross-validation. The Artificial Neural
Network architecture consisted of three hidden layers with
64, 32, and 16 neurons respectively, using ReLU activation
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functions and Adam optimizer. Gradient Boosting Machine
was configured with 100 estimators, learning rate of 0.1, and
maximum depth of 6.

Model performance was evaluated using multiple metrics
including coefficient of determination (R2), root mean square
error (RMSE), mean absolute error (MAE), and overall
classification accuracy for categorical salinity classes. Ten-
fold cross-validation was performed to assess model stability
and generalization capability.

Salinity Classification and Mapping

Predicted EC values were classified into five salinity classes
following FAO guidelines: non-saline (0-2 dS m™), slightly
saline (2-4 dS m™), moderately saline (4-8 dS m™), strongly
saline (8-16 dS m™), and extremely saline (>16 dS m™).
High-resolution salinity maps were generated at 30-meter
spatial resolution covering the entire study area.

Results

Model Performance Comparison

All four machine learning algorithms demonstrated good
performance for soil salinity prediction, with accuracy
varying based on algorithm characteristics and data
complexity (Table 2). Random Forest achieved the highest
overall performance with R? of 0.87, RMSE of 2.14 dS m,
and classification accuracy of 89.3%. Gradient Boosting
Machine showed comparable performance (R2=0.84, RMSE
=2.47 dS m™"), while Support Vector Machine and Artificial
Neural Network exhibited slightly lower but acceptable
accuracies.

Table 2: Performance comparison of machine learning algorithms for soil salinity prediction

Algorithm R2 | RMSE (dS m™?) | MAE (dS m™) | Classification Accuracy (%) | Kappa Coefficient
Random Forest 0.87 2.14 1.63 89.3 0.84
Gradient Boosting 0.84 2.47 1.89 86.7 0.81
Support Vector Machine 0.79 2.89 2.15 82.4 0.76
Artificial Neural Network |0.76 3.12 2.34 79.8 0.72

Feature Importance Analysis

Random Forest feature importance analysis revealed that
spectral indices related to soil brightness and salt reflectance
were most influential for salinity prediction (Figure 1). The
Normalized Difference Salinity Index (NDSI) emerged as the

most important variable, contributing 18.7% to model
predictions. Salinity Index-1 (SI-1) and Brightness Index (BI)
ranked second and third with contributions of 14.2% and
12.8% respectively.

NDSI 18,7 %
SI-1
Bl |8
SWIR1 8,9 %
NDMI 7.4 %
Red Band 6,8 %
SAVI 52%
NIR Band 4,9 %
NDVI 4,6 %
Others 52 %
0 é 1IO 1‘5 210
Variable importance (% contribution)

Fig 1: Feature importance ranking for Random Forest model
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Vegetation indices (NDVI, SAVI, EVI) showed moderate
importance, indicating their indirect relationship with salinity
through vegetation stress responses. Individual spectral
bands, particularly SWIR1 and Red bands, also contributed
significantly to model performance, suggesting the value of
incorporating raw spectral information alongside derived
indices.
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Spatial Distribution of Soil Salinity

The generated salinity map revealed complex spatial patterns
across the study landscape, with distinct hotspots of high
salinity concentration (Table 3). Non-saline areas comprised
31.8% of the total area, primarily located in elevated sandy
regions with good drainage. Slightly saline conditions
covered 33.5% of the landscape, representing the most
extensive category.

Table 3: Spatial distribution of soil salinity classes across the study area

Salinity Class EC Range (dS m™) | Area (km?) | Percentage (%) Primary Locations
Non-saline 0-2 4,770 31.8 Elevated sand dunes, well-drained areas
Slightly saline 2-4 5, 025 335 Gentle slopes, mixed agriculture
Moderately saline 4-8 2, 805 18.7 Low-lying areas, poor drainage
Strongly saline 8-16 1,740 11.6 Playa margins, groundwater discharge
Extremely saline >16 660 4.4 Salt lakes, evaporation ponds

Moderately to extremely saline areas accounted for 34.7% of
the landscape, concentrated around salt lakes (playas), low-
lying depressions, and areas with shallow, saline
groundwater. The most severely affected regions were
located in the central and southern portions of the study area,
where topographic lows and geological constraints create
conditions favorable for salt accumulation.

Temporal Variations in Salinity Patterns

Analysis of multi-temporal data revealed seasonal variations
in salinity distribution, particularly in areas with fluctuating
groundwater levels. Post-monsoon periods showed reduced
surface salinity in some regions due to salt leaching, while
pre-monsoon  conditions  exhibited maximum  salt
concentration due to intense evaporation. These temporal
dynamics highlight the importance of considering seasonal
effects in salinity monitoring programs.

Model Validation and Uncertainty Assessment
Independent validation using reserved test data confirmed the
robustness of the Random Forest model across different
salinity ranges. The model performed best for moderate
salinity levels (4-8 dS m™) with minimal bias, while slight
underestimation occurred in extremely saline conditions (>16
dS m™). Uncertainty maps generated through model
ensemble approaches indicated higher prediction confidence
in areas with abundant training data and lower uncertainty in
regions with consistent spectral signatures.

Discussion

The superior performance of Random Forest for soil salinity
mapping aligns with previous research demonstrating the
effectiveness of ensemble methods for environmental
modeling M. The algorithm's ability to handle non-linear
relationships, reduce overfitting, and provide feature
importance rankings makes it particularly suitable for
complex soil-landscape interactions characteristic of arid
environments. The achieved accuracy of 89.3% compares
favorably with other studies, considering the challenging
conditions and extensive spatial coverage of this research.
The dominance of spectral indices related to soil brightness
and salt reflectance in the feature importance analysis
confirms the physical basis of remote sensing-based salinity
detection. The Normalized Difference Salinity Index (NDSI)
effectively captures the unique spectral signature of salt-
affected soils, which exhibit higher reflectance in visible
wavelengths due to salt crystal formations on soil surfaces.

The combination of multiple indices provides
complementary information, enhancing model robustness
across diverse environmental conditions.

The spatial distribution patterns revealed by the Al-based
mapping approach demonstrate the complex hydrogeological
controls on salinity in arid landscapes. The concentration of
highly saline areas around playas and low-lying regions
reflects the combined influence of topography, groundwater
flow patterns, and evaporation processes 2. These findings
provide valuable insights for land management decisions,
irrigation planning, and agricultural development strategies
in the region.

The temporal variations observed in salinity patterns
underscore the dynamic nature of soil salinity in arid
environments. Seasonal fluctuations in groundwater levels,
precipitation patterns, and evaporation rates create temporal
variability that must be considered in monitoring programs.
The Al-based approach enables cost-effective temporal
monitoring through automated processing of satellite
imagery, supporting adaptive management strategies.

The integration of multiple machine learning algorithms
provides opportunities for ensemble modeling approaches
that could further improve prediction accuracy. While
Random  Forest demonstrated  superior individual
performance, combining predictions from multiple
algorithms might enhance robustness and reduce prediction
uncertainty, particularly in areas with limited training data or
complex environmental conditions 131,

Conclusion

This study successfully demonstrates the effectiveness of Al-
based approaches for mapping soil salinity in arid landscapes,
achieving high accuracy through integration of machine
learning algorithms with remote sensing data. The Random
Forest model emerged as the most effective approach,
providing accurate spatial predictions with comprehensive
uncertainty estimates. The developed methodology offers a
scalable, cost-effective solution for monitoring soil salinity
dynamics across large arid regions.

The identification of spectral indices most relevant to salinity
detection provides valuable guidance for future remote
sensing applications in similar environments. The NDSI, Sl-
1, and Bl indices proved most effective for capturing salt-
affected soil signatures, while vegetation indices provided
complementary information about indirect salinity effects
through plant stress responses.
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The spatial analysis revealed that over one-third of the study
area exhibits moderate to severe salinity levels, with distinct
hotspots requiring immediate attention for land management
interventions. The concentration of highly saline areas
around topographic lows and salt lakes reflects predictable
hydrogeological processes that can guide targeted
remediation efforts.

Future research directions should focus on incorporating
temporal dynamics more explicitly in model development,
exploring deep learning approaches for enhanced pattern
recognition, and integrating additional environmental
variables such as groundwater data and soil physical
properties. The expansion of this methodology to other arid
regions worldwide could contribute significantly to global
soil salinity monitoring and sustainable land management
efforts.

The Al-based mapping approach developed in this study
provides a powerful tool for supporting precision agriculture,
land use planning, and environmental monitoring in arid
landscapes. The combination of high accuracy, spatial detail,
and cost-effectiveness makes this methodology particularly
valuable for developing countries where traditional soil
survey approaches are often prohibitively expensive or
logistically challenging.
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