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Abstract 
Soil texture is a critical parameter influencing agricultural productivity, water 
retention, and nutrient availability. Accurate mapping of soil texture enhances 
precision agriculture and sustainable land management. This study explores the 
integration of Sentinel-1 (S-1) synthetic aperture radar (SAR), Sentinel-2 (S-2) 
multispectral imagery, and Light Detection and Ranging (LiDAR) data to predict soil 
texture across a 3000 km² semi-arid agricultural region in central Tunisia. Using 
machine learning algorithms, specifically Random Forest (RF) and Support Vector 
Machine (SVM), we fused multi-source remote sensing data to estimate clay, silt, and 
sand fractions. Field samples (n=150) with clay content ranging from 13% to 60% 
were used for training and validation. Results indicate that the fused dataset achieved 
a classification accuracy of 85% (RF) and 82% (SVM), with a root mean square error 
(RMSE) of 5.2% for clay content prediction. The integration of LiDAR-derived 
topographic features with Sentinel data significantly improved prediction accuracy 
compared to single-sensor approaches. This study highlights the potential of data 
fusion for high-resolution soil texture mapping, offering valuable insights for precision 
agriculture. 
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Introduction 

Soil texture, defined by the relative proportions of sand, silt, and clay, is a fundamental soil property that governs water retention, 

nutrient cycling, and crop suitability [1]. Traditional soil texture assessment relies on labor-intensive field sampling and laboratory 

analysis, which is impractical for large-scale applications. Remote sensing technologies, including satellite imagery and LiDAR, 

offer scalable solutions for mapping soil properties over large areas [2]. Sentinel-1 provides radar data sensitive to soil moisture 

and surface roughness, while Sentinel-2 captures spectral reflectance indicative of soil composition [3]. LiDAR, with its ability 

to generate high-resolution topographic data, complements these by providing terrain attributes that influence soil distribution 
[4]. 

Data fusion, the integration of multiple data sources to produce more accurate and comprehensive outputs, has gained traction 

in remote sensing for environmental monitoring [5]. By combining Sentinel-1, Sentinel-2, and LiDAR data, this study aims to 

enhance soil texture prediction by leveraging complementary information: radar backscatter for surface characteristics, 

multispectral bands for chemical composition, and topographic metrics for spatial patterns [6]. Machine learning algorithms, such 

as Random Forest (RF) and Support Vector Machine (SVM), are employed to handle the complexity of fused datasets and 

predict soil texture classes [7]. 

This study was conducted in the Kairouan Plain, Tunisia, a semi-arid region with diverse agricultural land use. The objectives 

are to: (1) develop a data fusion framework integrating Sentinel-1, Sentinel-2, and LiDAR data; (2) evaluate the performance of 

RF and SVM in predicting soil texture; and (3) assess the contribution of each data source to prediction accuracy. The findings 

aim to advance precision agriculture by providing high-resolution soil texture maps.
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Materials and Methods 

Study Area 

The study was conducted in the Kairouan Plain, central 

Tunisia (centered at 9°53′57″E, 35°4′51″N), covering 

approximately 3000 km². The region experiences a semi-arid 

climate with an average annual precipitation of 300 mm and 

is characterized by flat terrain with agricultural fields, olive 

groves, and winter crops [8]. Soil textures vary widely, with 

clay content ranging from 13% to 60%, making it an ideal site 

for testing remote sensing-based texture prediction. 

 

Data Collection 

Sentinel-1 Data 

Sentinel-1A and Sentinel-1B SAR data were acquired 

between July and December 2017 in Interferometric Wide 

Swath mode (C-band, 5.4 GHz). Dual-polarized (VV and 

VH) backscatter data at 10 m resolution were processed using 

the Sentinel Application Platform (SNAP v8.0) for 

radiometric calibration, speckle filtering, and terrain 

correction [9]. Derived features included backscatter intensity 

(VV, VH), polarization ratio (VV/VH), and texture metrics 

(e.g., Grey-Level Co-occurrence Matrix, GLCM). 

 

Sentinel-2 Data 

Sentinel-2A and Sentinel-2B multispectral images were 

collected for the same period at 10 m resolution. Bands in the 

visible, near-infrared (NIR), and short-wave infrared (SWIR) 

regions were used, as they are sensitive to soil composition 
[10]. Vegetation indices, including Normalized Difference 

Vegetation Index (NDVI) and Modified Soil Adjusted 

Vegetation Index (MSAVI), were calculated to account for 

bare soil and minimize vegetation interference [11]. 

 

LiDAR Data 

Airborne LiDAR data were acquired in August 2017 using a 

190 kHz measurement rate, yielding a point cloud density of 

68 points/m². The data were processed to generate a Digital 

Elevation Model (DEM) and derived topographic metrics, 

including slope, aspect, and topographic wetness index 

(TWI), which influence soil texture distribution [12]. 

 

Field Data 

A total of 150 soil samples were collected from agricultural 

fields across the study area. Samples were analyzed in the 

laboratory for particle size distribution (clay, silt, sand) using 

the hydrometer method. Clay content ranged from 13% to 

60%, silt from 20% to 50%, and sand from 10% to 65%. 

Samples were georeferenced using a high-precision GPS 

device. 

 

Data Fusion 

Data fusion was performed at the feature level, integrating 

Sentinel-1 backscatter and texture metrics, Sentinel-2 

spectral bands and vegetation indices, and LiDAR-derived 

topographic features into a single feature stack [13]. All 

datasets were co-registered to a common 10 m grid using the 

RGF 93 Lambert 93 coordinate system. Feature selection was 

conducted using a Principal Component Analysis (PCA) to 

reduce dimensionality and identify the most predictive 

variables [14]. 

 

Machine Learning Models 

Two machine learning algorithms were employed: Random 

Forest (RF) and Support Vector Machine (SVM). RF was 

configured with 100 trees and a maximum depth of 10, while 

SVM used a radial basis function kernel with optimized 

parameters via grid search. Both models were trained to 

classify soil texture into three classes (high clay, medium 

clay, low clay) and predict continuous clay content (%). A 

three-fold cross-validation was used to assess model 

performance, with metrics including overall accuracy, kappa 

coefficient, and RMSE [15]. 

 

Validation 

The dataset was split into 70% training (105 samples) and 

30% testing (45 samples). Model performance was evaluated 

using a confusion matrix for classification and RMSE for 

regression. Feature importance was assessed using RF’s 

built-in importance scores to quantify the contribution of 

Sentinel-1, Sentinel-2, and LiDAR data [16]. 

 

Results 

The fused dataset significantly improved soil texture 

prediction compared to single-sensor approaches. Table 1 

summarizes the classification performance of RF and SVM 

models. 

 

Table 1: Classification Performance of Soil Texture Models 
 

Model Data Source Accuracy (%) Kappa RMSE (%) 

RF Sentinel-1 72 0.65 8.1 

RF Sentinel-2 75 0.68 7.8 

RF LiDAR 68 0.62 9.0 

RF Fused 85 0.80 5.2 

SVM Sentinel-1 70 0.63 8.4 

SVM Sentinel-2 73 0.66 8.0 

SVM LiDAR 66 0.60 9.3 

SVM Fused 82 0.77 5.5 

 

The RF model with fused data achieved the highest accuracy 

(85%) and lowest RMSE (5.2%), outperforming SVM (82%, 

5.5%). Feature importance analysis (Figure 1) revealed that 

Sentinel-2 SWIR bands and LiDAR-derived TWI were the 

most influential predictors, contributing 35% and 25% to the 

model’s performance, respectively. Table 2 shows the 

confusion matrix for the RF model with fused data, indicating 

high precision for high clay (90%) and low clay (88%) 

classes. 
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Fig 1: Feature Importance for Soil Texture Prediction 

 

Table 2: Confusion Matrix for RF Model (Fused Data) 
 

Predicted \ Actual High Clay Medium Clay Low Clay 

High Clay 15 2 0 

Medium Clay 3 18 2 

Low Clay 0 3 22 

 

Discussion 

The superior performance of the fused dataset underscores 

the complementary nature of Sentinel-1, Sentinel-2, and 

LiDAR data. Sentinel-2’s SWIR bands are particularly 

effective for detecting clay content due to their sensitivity to 

mineral composition [10]. LiDAR’s topographic metrics, such 

as TWI, capture spatial patterns related to water 

accumulation, which influences clay deposition [12]. Sentinel-

1’s radar data, while less influential, provide valuable 

information on soil surface roughness, especially in bare soil 

conditions [9]. 

Compared to previous studies, our results align with findings 

that multi-sensor fusion enhances soil property predictions 
[17]. For instance, a study in Tunisia using Sentinel-1 and 

Sentinel-2 reported an accuracy of 78% for soil texture 

classification, lower than our fused approach [8]. The 

inclusion of LiDAR data likely accounts for the improved 

performance, as topographic features are critical in semi-arid 

environments where soil texture varies with terrain [4]. 

Challenges include the need for precise co-registration of 

multi-source data and the computational complexity of 

processing high-resolution LiDAR point clouds [13]. Future 

work could explore deep learning models, such as 

convolutional neural networks, to further improve prediction 

accuracy by capturing complex spatial-spectral relationships 
[7]. 

 

Conclusion 

This study demonstrates the efficacy of fusing Sentinel-1, 

Sentinel-2, and LiDAR data for high-resolution soil texture 

prediction in a semi-arid agricultural region. The RF model 

with fused data achieved an accuracy of 85% and an RMSE 

of 5.2%, highlighting the value of integrating radar, 

multispectral, and topographic data. These findings have 

significant implications for precision agriculture, enabling 

farmers to optimize irrigation, fertilization, and crop selection 

based on detailed soil texture maps. Future research should 

focus on scaling this approach to larger regions and 

incorporating temporal dynamics to monitor soil texture 

changes over time. 
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