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Soil texture is a critical parameter influencing agricultural productivity, water

retention, and nutrient availability. Accurate mapping of soil texture enhances
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Page No: 19-22 topographic features with Sentinel data significantly improved prediction accuracy

compared to single-sensor approaches. This study highlights the potential of data
fusion for high-resolution soil texture mapping, offering valuable insights for precision
agriculture.
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Introduction

Soil texture, defined by the relative proportions of sand, silt, and clay, is a fundamental soil property that governs water retention,
nutrient cycling, and crop suitability 1. Traditional soil texture assessment relies on labor-intensive field sampling and laboratory
analysis, which is impractical for large-scale applications. Remote sensing technologies, including satellite imagery and LiDAR,
offer scalable solutions for mapping soil properties over large areas 1. Sentinel-1 provides radar data sensitive to soil moisture
and surface roughness, while Sentinel-2 captures spectral reflectance indicative of soil composition Bl LIiDAR, with its ability
to generate high-resolution topographic data, complements these by providing terrain attributes that influence soil distribution
[4

Data fusion, the integration of multiple data sources to produce more accurate and comprehensive outputs, has gained traction
in remote sensing for environmental monitoring ©I. By combining Sentinel-1, Sentinel-2, and LiDAR data, this study aims to
enhance soil texture prediction by leveraging complementary information: radar backscatter for surface characteristics,
multispectral bands for chemical composition, and topographic metrics for spatial patterns [, Machine learning algorithms, such
as Random Forest (RF) and Support Vector Machine (SVM), are employed to handle the complexity of fused datasets and
predict soil texture classes [,

This study was conducted in the Kairouan Plain, Tunisia, a semi-arid region with diverse agricultural land use. The objectives
are to: (1) develop a data fusion framework integrating Sentinel-1, Sentinel-2, and LiDAR data; (2) evaluate the performance of
RF and SVM in predicting soil texture; and (3) assess the contribution of each data source to prediction accuracy. The findings
aim to advance precision agriculture by providing high-resolution soil texture maps.
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Materials and Methods

Study Area

The study was conducted in the Kairouan Plain, central
Tunisia (centered at 9°53'57"E, 35°4'51"N), covering
approximately 3000 km2. The region experiences a semi-arid
climate with an average annual precipitation of 300 mm and
is characterized by flat terrain with agricultural fields, olive
groves, and winter crops 1. Soil textures vary widely, with
clay content ranging from 13% to 60%, making it an ideal site
for testing remote sensing-based texture prediction.

Data Collection

Sentinel-1 Data

Sentinel-1A and Sentinel-1B SAR data were acquired
between July and December 2017 in Interferometric Wide
Swath mode (C-band, 5.4 GHz). Dual-polarized (VV and
VH) backscatter data at 10 m resolution were processed using
the Sentinel Application Platform (SNAP v8.0) for
radiometric calibration, speckle filtering, and terrain
correction I, Derived features included backscatter intensity
(VV, VH), polarization ratio (VV/VH), and texture metrics
(e.g., Grey-Level Co-occurrence Matrix, GLCM).

Sentinel-2 Data

Sentinel-2A and Sentinel-2B multispectral images were
collected for the same period at 10 m resolution. Bands in the
visible, near-infrared (NIR), and short-wave infrared (SWIR)
regions were used, as they are sensitive to soil composition
1101 Vegetation indices, including Normalized Difference
Vegetation Index (NDVI) and Modified Soil Adjusted
Vegetation Index (MSAVI), were calculated to account for
bare soil and minimize vegetation interference 111,

LiDAR Data

Airborne LiDAR data were acquired in August 2017 using a
190 kHz measurement rate, yielding a point cloud density of
68 points/m2. The data were processed to generate a Digital
Elevation Model (DEM) and derived topographic metrics,
including slope, aspect, and topographic wetness index
(TWI1), which influence soil texture distribution 22,

Field Data
A total of 150 soil samples were collected from agricultural
fields across the study area. Samples were analyzed in the
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laboratory for particle size distribution (clay, silt, sand) using
the hydrometer method. Clay content ranged from 13% to
60%, silt from 20% to 50%, and sand from 10% to 65%.
Samples were georeferenced using a high-precision GPS
device.

Data Fusion

Data fusion was performed at the feature level, integrating
Sentinel-1 backscatter and texture metrics, Sentinel-2
spectral bands and vegetation indices, and LiDAR-derived
topographic features into a single feature stack (3. All
datasets were co-registered to a common 10 m grid using the
RGF 93 Lambert 93 coordinate system. Feature selection was
conducted using a Principal Component Analysis (PCA) to
reduce dimensionality and identify the most predictive
variables 4],

Machine Learning Models

Two machine learning algorithms were employed: Random
Forest (RF) and Support Vector Machine (SVM). RF was
configured with 100 trees and a maximum depth of 10, while
SVM used a radial basis function kernel with optimized
parameters via grid search. Both models were trained to
classify soil texture into three classes (high clay, medium
clay, low clay) and predict continuous clay content (%). A
three-fold cross-validation was used to assess model
performance, with metrics including overall accuracy, kappa
coefficient, and RMSE %,

Validation

The dataset was split into 70% training (105 samples) and
30% testing (45 samples). Model performance was evaluated
using a confusion matrix for classification and RMSE for
regression. Feature importance was assessed using RF’s
built-in importance scores to quantify the contribution of
Sentinel-1, Sentinel-2, and LiDAR data 161,

Results
The fused dataset significantly improved soil texture
prediction compared to single-sensor approaches. Table 1
summarizes the classification performance of RF and SVM
models.

Table 1: Classification Performance of Soil Texture Models

Model Data Source Accuracy (%) Kappa RMSE (%)

RF Sentinel-1 72 0.65 8.1

RF Sentinel-2 75 0.68 7.8

RF LiDAR 68 0.62 9.0

RF Fused 85 0.80 5.2
SVM Sentinel-1 70 0.63 8.4
SVM Sentinel-2 73 0.66 8.0
SVM LiDAR 66 0.60 9.3
SVM Fused 82 0.77 5.5

The RF model with fused data achieved the highest accuracy
(85%) and lowest RMSE (5.2%), outperforming SVM (82%,
5.5%). Feature importance analysis (Figure 1) revealed that
Sentinel-2 SWIR bands and LiDAR-derived TWI were the
most influential predictors, contributing 35% and 25% to the

model’s performance, respectively. Table 2 shows the
confusion matrix for the RF model with fused data, indicating
high precision for high clay (90%) and low clay (88%)
classes.
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Fig 1: Feature Importance for Soil Texture Prediction
Table 2: Confusion Matrix for RF Model (Fused Data)
Predicted \ Actual High Clay Medium Clay Low Clay
High Clay 15 2 0
Medium Clay 3 18 2
Low Clay 0 3 22

Discussion

The superior performance of the fused dataset underscores
the complementary nature of Sentinel-1, Sentinel-2, and
LIiDAR data. Sentinel-2’s SWIR bands are particularly
effective for detecting clay content due to their sensitivity to
mineral composition [, LiDAR’s topographic metrics, such
as TWI, capture spatial patterns related to water
accumulation, which influences clay deposition [, Sentinel-
I’s radar data, while less influential, provide valuable
information on soil surface roughness, especially in bare soil
conditions [,

Compared to previous studies, our results align with findings
that multi-sensor fusion enhances soil property predictions
[17], For instance, a study in Tunisia using Sentinel-1 and
Sentinel-2 reported an accuracy of 78% for soil texture
classification, lower than our fused approach [l The
inclusion of LIDAR data likely accounts for the improved
performance, as topographic features are critical in semi-arid
environments where soil texture varies with terrain 4],
Challenges include the need for precise co-registration of
multi-source data and the computational complexity of
processing high-resolution LiDAR point clouds 3. Future
work could explore deep learning models, such as
convolutional neural networks, to further improve prediction
accuracy by capturing complex spatial-spectral relationships
7

Conclusion

This study demonstrates the efficacy of fusing Sentinel-1,
Sentinel-2, and LiDAR data for high-resolution soil texture
prediction in a semi-arid agricultural region. The RF model
with fused data achieved an accuracy of 85% and an RMSE
of 5.2%, highlighting the wvalue of integrating radar,
multispectral, and topographic data. These findings have
significant implications for precision agriculture, enabling
farmers to optimize irrigation, fertilization, and crop selection

based on detailed soil texture maps. Future research should
focus on scaling this approach to larger regions and
incorporating temporal dynamics to monitor soil texture
changes over time.
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