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The integration of artificial intelligence (Al) in soil property prediction has

revolutionized digital soil mapping, yet the "black box" nature of complex machine
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index (NDVI) were the most influential predictors across all soil properties. SHAP
waterfall plots successfully explained individual predictions, showing how each
feature contributed to model decisions. The XAl framework identified non-linear
relationships and feature interactions that traditional statistical methods failed to
capture, including threshold effects of temperature on soil organic carbon and complex
interactions between topographic variables. Model explanations demonstrated high
consistency across different XAl methods, with correlation coefficients >0.85 between
SHAP and LIME importance rankings. The developed XAl framework provides
transparent, trustworthy soil property predictions, enabling informed agricultural
management decisions and supporting sustainable farming practices. This research
establishes a foundation for implementing explainable machine learning in precision
agriculture applications.
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Introduction

Digital soil mapping has emerged as a critical technology for sustainable agriculture, enabling precise characterization of soil
properties across diverse landscapes . Machine learning algorithms have demonstrated superior performance compared to
traditional geostatistical methods, achieving remarkable accuracy in predicting soil organic carbon, pH, nutrient content, and
other essential properties (4. However, the increasing complexity of these models, particularly deep learning architectures, has
created a fundamental challenge known as the "black box" problem, where model predictions lack transparency and
interpretability 1.

The opacity of complex machine learning models poses significant barriers to adoption in agricultural systems, where
stakeholders require understanding of prediction rationale for informed decision-making 1.
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Farmers, agronomists, and policymakers need to comprehend
why specific management recommendations are generated
and how different environmental factors influence soil
properties. This transparency is essential for building trust,
ensuring regulatory compliance, and enabling knowledge
transfer across different agricultural contexts [,

Explainable Artificial Intelligence (XAI) has emerged as a
rapidly evolving field addressing the interpretability
challenge in machine learning applications [l XAl
encompasses various techniques designed to make Al model
decisions transparent, interpretable, and trustworthy while
maintaining predictive performance. These methods range
from inherently interpretable models to post-hoc explanation
techniques that can be applied to any machine learning
algorithm [,

Several XAl approaches have been developed for different
applications, including SHapley Additive exPlanations
(SHAP), Local Interpretable Model-agnostic Explanations
(LIME), and Permutation Feature Importance [, SHAP
provides theoretically grounded explanations based on
cooperative game theory, quantifying each feature's
contribution to individual predictions. LIME generates local
explanations by approximating complex models with
simpler, interpretable models in the vicinity of specific
instances. Permutation Feature Importance assesses global
feature importance by measuring prediction accuracy
changes when feature values are randomly shuffled ©l,

The application of XAl in soil science represents an emerging
research frontier with significant potential for advancing
digital soil mapping [%. Previous studies have primarily
focused on achieving high predictive accuracy, with limited
attention to model interpretability and explanation
generation. The few existing XAl applications in soil science
have been constrained to specific geographic regions or
limited soil properties, lacking comprehensive evaluation
across diverse environmental conditions 111,

Understanding the mechanisms underlying soil property
variations is crucial for developing effective management
strategies and predicting responses to environmental changes
(121 Traditional soil science relies heavily on expert
knowledge and empirical relationships, which may not
capture  complex, non-linear interactions between
environmental factors. XAl techniques can reveal hidden
patterns and relationships in soil data, providing insights that
complement traditional soil science understanding.

The integration of XAl in soil property prediction models
addresses several critical challenges: (1) enhancing
stakeholder  trust and  adoption of  Al-based
recommendations, (2) identifying key environmental drivers
of soil property variations, (3) detecting model biases and
limitations, (4) facilitating knowledge transfer across
different agricultural systems, and (5) supporting regulatory
compliance and auditing requirements 31,
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This study aims to develop and evaluate a comprehensive
XAl framework for soil property prediction models,
demonstrating how explainability techniques can enhance
transparency without compromising predictive accuracy.
Specific objectives include: (1) implementing multiple XAl
methods for soil property prediction models, (2) comparing
explanation consistency across different XAl techniques, (3)
identifying key environmental drivers of soil properties
through model explanations, and (4) evaluating the practical
utility of XAl for agricultural decision-making applications.

Materials and Methods

Study Area and Data Collection

The research was conducted across five representative
agricultural regions spanning different agro-climatic zones:
temperate croplands in lowa, USA (41°35'N, 93°37'W),
subtropical rice systems in Guangzhou, China (23°07'N,
113°15'E), Mediterranean vineyards in Tuscany, Italy
(43°46'N, 11°25'E), tropical plantations in S&o Paulo, Brazil
(23°33'S, 46°38'W), and semi-arid farming systems in
Punjab, India (30°54'N, 75°25'E). This diverse geographic
coverage ensures model robustness across different
environmental conditions and farming systems.

Soil samples were collected using stratified random sampling
design, with 3,247 georeferenced sampling points distributed
across the study regions. Sample density averaged 0.8 points
per kmz2, with higher density in areas of high spatial
variability. Sampling was conducted during optimal periods
(post-harvest, pre-planting) to minimize temporal
confounding effects.

Laboratory Analysis

Soil samples were processed following standardized
protocols for three target properties: soil organic carbon
(SOC), pH, and available nitrogen. SOC was determined
using the Walkley-Black wet oxidation method with
dichromate digestion. Soil pH was measured in 1:2.5 soil-
water suspension using a calibrated pH electrode. Available
nitrogen was quantified through alkaline permanganate
oxidation followed by steam distillation and titration. All
analyses were performed in triplicate with quality control
samples (10% of total) to ensure measurement accuracy.

Environmental Covariates

A comprehensive set of 47 environmental covariates was
compiled representing climate, topography, vegetation, and
parent material factors (Table 1). Climate variables included
temperature, precipitation, humidity, and derived indices
from WorldClim database at 1-km resolution. Topographic
attributes were calculated from 30-meter SRTM digital
elevation models, including elevation, slope, aspect,
curvature, and compound topographic index.

Table 1: Environmental covariates used in soil property prediction models

Category Variables Source Resolution |Count
Climate Temperature (mean, min, max), Precipitation, Humidity, Aridity Index WorldClim v2.1 1km 12
Topography Elevation, Slope, Aspect, Curvature, TWI, CTI, Flow Accumulation SRTM DEM 30m 15
Vegetation NDVI, EVI, LAI, SAVI, MSAVI, Green Vegetation Index MODIS/Landsat 250 m/30m| 8
Geology Parent Material, Rock Type, Geological Age Global Lithology Map 1km 6
Land Use Crop Type, Land Cover, Management Intensity LULC Database 30 m 4
Pedology Soil Taxonomy, Drainage Class SoilGrids250m 250 m 2
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Vegetation indices were derived from MODIS and Landsat
imagery, including Normalized Difference Vegetation Index
(NDVI), Enhanced Vegetation Index (EVI), and Leaf Area
Index (LAI). Geological information was obtained from
global lithology databases, providing parent material and
bedrock characteristics. Land use data incorporated crop
types, management practices, and land cover classifications
from high-resolution satellite imagery.

Machine Learning Model Implementation

Four machine learning algorithms were implemented and
optimized for soil property prediction: Random Forest (RF),
Extreme Gradient Boosting (XGBoost), Support Vector
Machine (SVM), and Artificial Neural Networks (ANN).
Model selection encompassed algorithms with varying
complexity levels to evaluate XAl effectiveness across
different model types.

Random Forest was configured with 500 trees, maximum
depth of 15, and minimum samples per leaf of 3. Feature
importance was calculated using mean decrease in impurity.
XGBoost employed 1000 estimators with learning rate of 0.1,
maximum depth of 8, and early stopping based on validation
loss. Support Vector Machine utilized radial basis function
kernel with gamma and C parameters optimized through grid
search cross-validation. Neural Networks featured three
hidden layers (128, 64, 32 neurons) with ReLU activation,
dropout regularization (0.3), and Adam optimizer.

The dataset was randomly partitioned into training (70%,
n=2,273), validation (15%, n=487), and testing (15%, n=487)
subsets. Hyperparameter optimization was performed using
5-fold cross-validation on the training set, with model
performance evaluated on the independent test set.

Explainable Al Implementation

Three complementary XAl methods were implemented to
provide comprehensive model explanations: SHAP (SHapley
Additive exPlanations), LIME (Local Interpretable Model-
agnostic Explanations), and Permutation Feature Importance.
SHAP analysis was conducted using Tree Explainer for tree-
based models and Kernel Explainer for other algorithms.
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SHAP values were calculated for all features and predictions,
enabling both global and local explanations. Summary plots,
waterfall plots, and dependence plots were generated to
visualize feature contributions and interactions.

LIME explanations were generated for individual predictions
using local linear approximations. The method creates
interpretable representations by perturbing input features and
observing prediction changes. Explanations were generated
for representative samples across different soil property
ranges and geographic regions.

Permutation Feature Importance assessed global feature
importance by randomly shuffling individual features and
measuring resulting prediction accuracy changes. This
model-agnostic approach provides robust importance
rankings independent of specific algorithm implementations.

Model Evaluation and Comparison

Model performance was evaluated using multiple metrics:
coefficient of determination (R?), root mean square error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE). Statistical significance testing was
performed using paired t-tests to compare model
performances.

XAl method consistency was assessed by calculating
correlation coefficients between feature importance rankings
from different explanation techniques. Explanation stability
was evaluated through bootstrap resampling, generating
confidence intervals for importance scores.

Results

Model Performance Comparison

All machine learning algorithms demonstrated good
performance for soil property prediction, with Random
Forest achieving the highest overall accuracy across all target
variables (Table 2). For soil organic carbon prediction,
Random Forest achieved R2 of 0.89, significantly
outperforming other algorithms (p<0.001). XGBoost showed
comparable performance (R?2 = 0.86) while maintaining
computational efficiency.

Table 2: Performance comparison of machine learning algorithms for soil property prediction

Algorithm Soil Organic Carbon Soil pH Available Nitrogen
R2 RMSE MAE | R?2 | RMSE | MAE | R? RMSE | MAE
Random Forest 0.89 0.67 049 |0.82| 0.34 0.26 | 0.78 124 9.2
XGBoost 0.86 0.74 056 |0.79| 0.37 0.29 | 0.75 13.8 10.1
Support Vector Machine 0.81 0.89 0.67 |0.75] 041 0.32 | 0.69 16.2 125
Neural Networks 0.83 0.82 0.61 |0.77| 0.39 0.30 | 0.72 14.9 11.3

Neural Networks showed competitive performance but
exhibited higher variability across cross-validation folds.
Support Vector Machine demonstrated the lowest accuracy,
particularly for available nitrogen prediction, likely due to
challenges handling non-linear relationships in the complex
soil-environment system.

Feature Importance Analysis

SHAP analysis revealed consistent patterns in feature
importance across different soil properties, with elevation,
precipitation, and NDVI emerging as the most influential

predictors (Figure 1). For soil organic carbon, climate
variables (precipitation, temperature) showed the highest
importance, followed by topographic factors (elevation,
slope) and vegetation indices.

The SHAP dependence plots revealed complex non-linear
relationships between environmental factors and soil
properties. Precipitation showed a positive relationship with
SOC up to approximately 1200 mm annually, beyond which
the relationship plateaued. Temperature exhibited threshold
effects, with optimal SOC accumulation occurring
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Fig 1: SHAP feature importance summary for soil organic carbon prediction

between 12-18 °C mean annual temperature.

Elevation demonstrated strong positive correlation with SOC
in mountainous regions, likely reflecting cooler temperatures
and reduced decomposition rates. NDVI showed consistent
positive relationship with SOC across all study regions,
confirming the link between vegetation productivity and soil
carbon accumulation.

XAl Method Consistency

Comparison between different XAl methods revealed high
consistency in feature importance rankings, with correlation
coefficients exceeding 0.85 between SHAP and LIME
explanations (Table 3). Permutation Feature Importance
showed slightly lower correlation (0.78-0.82) but maintained
similar ranking for the most important features.

Table 3: Correlation between different XAl methods for feature importance rankings

Comparison Soil Organic Carbon | Soil pH | Available Nitrogen | Average
SHAP vs LIME 0.87 0.85 0.89 0.87
SHAP vs Permutation 0.82 0.78 0.84 0.81
LIME vs Permutation 0.79 0.81 0.83 0.81

Local explanations generated by LIME showed good
agreement with SHAP for individual predictions, with
average explanation similarity scores >0.75. This consistency
across methods enhances confidence in the generated
explanations and supports their reliability for decision-
making applications.

Model Interpretability Insights

XAl analysis revealed several important insights about soil-
environment relationships that traditional statistical methods
failed to capture. Interaction effects between temperature and
precipitation significantly influenced SOC predictions, with
optimal conditions occurring at moderate temperature-high
precipitation combinations.

Topographic variables showed complex interactions, with
slope and aspect effects varying based on elevation and
climate conditions. In mountainous regions, north-facing
slopes showed higher SOC content, while in flat agricultural
areas, slope direction had minimal influence.

The analysis identified potential model limitations and
biases, including reduced accuracy in extreme climate
conditions and underrepresentation of certain soil types in
training data. These insights guide future model
improvements and data collection strategies.

Practical Applications

SHAP waterfall plots successfully explained individual
predictions, showing step-by-step contribution of each
feature to final model output. These explanations enable

farmers and agronomists to understand specific site
conditions affecting soil properties and identify management
opportunities.

For example, a low SOC prediction could be attributed to
high temperature, low precipitation, and intensive tillage
practices, suggesting potential interventions such as cover
cropping, reduced tillage, or organic matter addition. The
quantitative nature of SHAP values enables prioritization of
management actions based on their potential impact.

Discussion

The superior performance of Random Forest with XAl
integration demonstrates that model interpretability does not
necessarily compromise predictive accuracy 4. The
ensemble nature of Random Forest provides inherent
interpretability advantages while maintaining robustness
across diverse environmental conditions. The high feature
importance consistency across different XAl methods
enhances confidence in the generated explanations and
supports their practical utility.

The identification of precipitation, elevation, and NDVI as
primary drivers of soil properties aligns with established soil
science principles while revealing complex non-linear
relationships and interactions. The threshold effects observed
for temperature and precipitation provide valuable insights
for predicting soil responses to climate change scenarios.
These findings contribute to process-based understanding of
soil-environment relationships beyond purely predictive
applications.
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The high consistency between SHAP and LIME explanations
validates the reliability of XAl methods for soil property
prediction. The slight discrepancies with Permutation Feature
Importance likely reflect differences in explanation scope
(local vs global) and methodology (game theory vs
perturbation-based). This multi-method approach provides
comprehensive understanding of model behavior and
enhances explanation robustness.

The practical applications demonstrated through waterfall
plots and individual prediction explanations illustrate the
potential for XAl to bridge the gap between complex machine
learning models and agricultural decision-making. The
quantitative nature of SHAP values enables evidence-based
management recommendations and supports precision
agriculture applications.

The study limitations include geographic bias toward specific
agricultural systems and limited temporal coverage. Future
research should expand to additional soil properties,
incorporate temporal dynamics, and evaluate XAl
effectiveness across different user groups and decision
contexts. Integration with economic and environmental
impact assessments could further enhance practical utility.

Conclusion

This research demonstrates the successful integration of
Explainable Al techniques in soil property prediction models,
achieving high accuracy while maintaining transparency and
interpretability. The Random Forest model with SHAP
analysis emerged as the optimal combination, providing
accurate predictions with comprehensive explanations of
underlying decision processes.

Key findings include the identification of precipitation,
elevation, and NDVI as primary drivers of soil properties,
with complex non-linear relationships and threshold effects
revealed through XAl analysis. The high consistency
between different XAl methods (correlation >0.85) validates
the reliability of generated explanations and supports their
practical application in agricultural systems.

The developed XAl framework addresses critical barriers to
Al adoption in agriculture by providing transparent,
trustworthy model predictions that enable informed decision-
making. The quantitative feature contributions derived from
SHAP analysis support evidence-based management
recommendations and precision agriculture applications.
Future research should focus on expanding geographic
coverage, incorporating additional soil properties, and
evaluating XAl effectiveness across different stakeholder
groups. Integration with process-based soil models could
combine mechanistic understanding with data-driven
insights, advancing digital soil mapping capabilities.

The implementation of XAl in soil science represents a
significant step toward trustworthy Al applications in
agriculture, supporting sustainable farming practices and
evidence-based policy development. This framework
provides a foundation for broader adoption of explainable
machine learning in environmental monitoring and natural
resource management applications.
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