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Abstract 
The integration of artificial intelligence (AI) in soil property prediction has 
revolutionized digital soil mapping, yet the "black box" nature of complex machine 
learning models limits their adoption in agricultural decision-making and policy 
formulation. This study presents a comprehensive evaluation of Explainable AI (XAI) 
techniques applied to soil property prediction models, enhancing interpretability 
without compromising predictive accuracy. We implemented and compared four 
machine learning algorithms (Random Forest, XGBoost, Support Vector Machine, 
and Neural Networks) with three XAI methods (SHAP, LIME, and Permutation 
Feature Importance) for predicting soil organic carbon (SOC), pH, and available 
nitrogen across 3,247 sampling points in diverse agricultural landscapes. The Random 
Forest model achieved the highest accuracy (R² = 0.89 for SOC, 0.82 for pH, 0.78 for 
nitrogen) while maintaining superior interpretability through SHAP analysis. Key 
findings revealed that elevation, precipitation, and normalized difference vegetation 
index (NDVI) were the most influential predictors across all soil properties. SHAP 
waterfall plots successfully explained individual predictions, showing how each 
feature contributed to model decisions. The XAI framework identified non-linear 
relationships and feature interactions that traditional statistical methods failed to 
capture, including threshold effects of temperature on soil organic carbon and complex 
interactions between topographic variables. Model explanations demonstrated high 
consistency across different XAI methods, with correlation coefficients >0.85 between 
SHAP and LIME importance rankings. The developed XAI framework provides 
transparent, trustworthy soil property predictions, enabling informed agricultural 
management decisions and supporting sustainable farming practices. This research 
establishes a foundation for implementing explainable machine learning in precision 
agriculture applications. 
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Introduction 

Digital soil mapping has emerged as a critical technology for sustainable agriculture, enabling precise characterization of soil 

properties across diverse landscapes [1]. Machine learning algorithms have demonstrated superior performance compared to 

traditional geostatistical methods, achieving remarkable accuracy in predicting soil organic carbon, pH, nutrient content, and 

other essential properties [2]. However, the increasing complexity of these models, particularly deep learning architectures, has 

created a fundamental challenge known as the "black box" problem, where model predictions lack transparency and 

interpretability [3]. 

The opacity of complex machine learning models poses significant barriers to adoption in agricultural systems, where 

stakeholders require understanding of prediction rationale for informed decision-making [4]. 
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Farmers, agronomists, and policymakers need to comprehend 

why specific management recommendations are generated 

and how different environmental factors influence soil 

properties. This transparency is essential for building trust, 

ensuring regulatory compliance, and enabling knowledge 

transfer across different agricultural contexts [5]. 

Explainable Artificial Intelligence (XAI) has emerged as a 

rapidly evolving field addressing the interpretability 

challenge in machine learning applications [6]. XAI 

encompasses various techniques designed to make AI model 

decisions transparent, interpretable, and trustworthy while 

maintaining predictive performance. These methods range 

from inherently interpretable models to post-hoc explanation 

techniques that can be applied to any machine learning 

algorithm [7]. 

Several XAI approaches have been developed for different 

applications, including SHapley Additive exPlanations 

(SHAP), Local Interpretable Model-agnostic Explanations 

(LIME), and Permutation Feature Importance [8]. SHAP 

provides theoretically grounded explanations based on 

cooperative game theory, quantifying each feature's 

contribution to individual predictions. LIME generates local 

explanations by approximating complex models with 

simpler, interpretable models in the vicinity of specific 

instances. Permutation Feature Importance assesses global 

feature importance by measuring prediction accuracy 

changes when feature values are randomly shuffled [9]. 

The application of XAI in soil science represents an emerging 

research frontier with significant potential for advancing 

digital soil mapping [10]. Previous studies have primarily 

focused on achieving high predictive accuracy, with limited 

attention to model interpretability and explanation 

generation. The few existing XAI applications in soil science 

have been constrained to specific geographic regions or 

limited soil properties, lacking comprehensive evaluation 

across diverse environmental conditions [11]. 

Understanding the mechanisms underlying soil property 

variations is crucial for developing effective management 

strategies and predicting responses to environmental changes 
[12]. Traditional soil science relies heavily on expert 

knowledge and empirical relationships, which may not 

capture complex, non-linear interactions between 

environmental factors. XAI techniques can reveal hidden 

patterns and relationships in soil data, providing insights that 

complement traditional soil science understanding. 

The integration of XAI in soil property prediction models 

addresses several critical challenges: (1) enhancing 

stakeholder trust and adoption of AI-based 

recommendations, (2) identifying key environmental drivers 

of soil property variations, (3) detecting model biases and 

limitations, (4) facilitating knowledge transfer across 

different agricultural systems, and (5) supporting regulatory 

compliance and auditing requirements [13]. 

This study aims to develop and evaluate a comprehensive 

XAI framework for soil property prediction models, 

demonstrating how explainability techniques can enhance 

transparency without compromising predictive accuracy. 

Specific objectives include: (1) implementing multiple XAI 

methods for soil property prediction models, (2) comparing 

explanation consistency across different XAI techniques, (3) 

identifying key environmental drivers of soil properties 

through model explanations, and (4) evaluating the practical 

utility of XAI for agricultural decision-making applications. 

 

Materials and Methods 

Study Area and Data Collection 

The research was conducted across five representative 

agricultural regions spanning different agro-climatic zones: 

temperate croplands in Iowa, USA (41°35'N, 93°37'W), 

subtropical rice systems in Guangzhou, China (23°07'N, 

113°15'E), Mediterranean vineyards in Tuscany, Italy 

(43°46'N, 11°25'E), tropical plantations in São Paulo, Brazil 

(23°33'S, 46°38'W), and semi-arid farming systems in 

Punjab, India (30°54'N, 75°25'E). This diverse geographic 

coverage ensures model robustness across different 

environmental conditions and farming systems. 

Soil samples were collected using stratified random sampling 

design, with 3,247 georeferenced sampling points distributed 

across the study regions. Sample density averaged 0.8 points 

per km², with higher density in areas of high spatial 

variability. Sampling was conducted during optimal periods 

(post-harvest, pre-planting) to minimize temporal 

confounding effects. 

 

Laboratory Analysis 

Soil samples were processed following standardized 

protocols for three target properties: soil organic carbon 

(SOC), pH, and available nitrogen. SOC was determined 

using the Walkley-Black wet oxidation method with 

dichromate digestion. Soil pH was measured in 1:2.5 soil-

water suspension using a calibrated pH electrode. Available 

nitrogen was quantified through alkaline permanganate 

oxidation followed by steam distillation and titration. All 

analyses were performed in triplicate with quality control 

samples (10% of total) to ensure measurement accuracy. 

 

Environmental Covariates 

A comprehensive set of 47 environmental covariates was 

compiled representing climate, topography, vegetation, and 

parent material factors (Table 1). Climate variables included 

temperature, precipitation, humidity, and derived indices 

from WorldClim database at 1-km resolution. Topographic 

attributes were calculated from 30-meter SRTM digital 

elevation models, including elevation, slope, aspect, 

curvature, and compound topographic index. 

 

Table 1: Environmental covariates used in soil property prediction models 
 

Category Variables Source Resolution Count 

Climate Temperature (mean, min, max), Precipitation, Humidity, Aridity Index WorldClim v2.1 1 km 12 

Topography Elevation, Slope, Aspect, Curvature, TWI, CTI, Flow Accumulation SRTM DEM 30 m 15 

Vegetation NDVI, EVI, LAI, SAVI, MSAVI, Green Vegetation Index MODIS/Landsat 250 m/30 m 8 

Geology Parent Material, Rock Type, Geological Age Global Lithology Map 1 km 6 

Land Use Crop Type, Land Cover, Management Intensity LULC Database 30 m 4 

Pedology Soil Taxonomy, Drainage Class SoilGrids250m 250 m 2 
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Vegetation indices were derived from MODIS and Landsat 

imagery, including Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), and Leaf Area 

Index (LAI). Geological information was obtained from 

global lithology databases, providing parent material and 

bedrock characteristics. Land use data incorporated crop 

types, management practices, and land cover classifications 

from high-resolution satellite imagery. 

 

Machine Learning Model Implementation 

Four machine learning algorithms were implemented and 

optimized for soil property prediction: Random Forest (RF), 

Extreme Gradient Boosting (XGBoost), Support Vector 

Machine (SVM), and Artificial Neural Networks (ANN). 

Model selection encompassed algorithms with varying 

complexity levels to evaluate XAI effectiveness across 

different model types. 

Random Forest was configured with 500 trees, maximum 

depth of 15, and minimum samples per leaf of 3. Feature 

importance was calculated using mean decrease in impurity. 

XGBoost employed 1000 estimators with learning rate of 0.1, 

maximum depth of 8, and early stopping based on validation 

loss. Support Vector Machine utilized radial basis function 

kernel with gamma and C parameters optimized through grid 

search cross-validation. Neural Networks featured three 

hidden layers (128, 64, 32 neurons) with ReLU activation, 

dropout regularization (0.3), and Adam optimizer. 

The dataset was randomly partitioned into training (70%, 

n=2,273), validation (15%, n=487), and testing (15%, n=487) 

subsets. Hyperparameter optimization was performed using 

5-fold cross-validation on the training set, with model 

performance evaluated on the independent test set. 

 

Explainable AI Implementation 

Three complementary XAI methods were implemented to 

provide comprehensive model explanations: SHAP (SHapley 

Additive exPlanations), LIME (Local Interpretable Model-

agnostic Explanations), and Permutation Feature Importance. 

SHAP analysis was conducted using Tree Explainer for tree-

based models and Kernel Explainer for other algorithms. 

SHAP values were calculated for all features and predictions, 

enabling both global and local explanations. Summary plots, 

waterfall plots, and dependence plots were generated to 

visualize feature contributions and interactions. 

LIME explanations were generated for individual predictions 

using local linear approximations. The method creates 

interpretable representations by perturbing input features and 

observing prediction changes. Explanations were generated 

for representative samples across different soil property 

ranges and geographic regions. 

Permutation Feature Importance assessed global feature 

importance by randomly shuffling individual features and 

measuring resulting prediction accuracy changes. This 

model-agnostic approach provides robust importance 

rankings independent of specific algorithm implementations. 

 

Model Evaluation and Comparison 

Model performance was evaluated using multiple metrics: 

coefficient of determination (R²), root mean square error 

(RMSE), mean absolute error (MAE), and mean absolute 

percentage error (MAPE). Statistical significance testing was 

performed using paired t-tests to compare model 

performances. 

XAI method consistency was assessed by calculating 

correlation coefficients between feature importance rankings 

from different explanation techniques. Explanation stability 

was evaluated through bootstrap resampling, generating 

confidence intervals for importance scores. 

 

Results 

Model Performance Comparison 

All machine learning algorithms demonstrated good 

performance for soil property prediction, with Random 

Forest achieving the highest overall accuracy across all target 

variables (Table 2). For soil organic carbon prediction, 

Random Forest achieved R² of 0.89, significantly 

outperforming other algorithms (p<0.001). XGBoost showed 

comparable performance (R² = 0.86) while maintaining 

computational efficiency. 

 
Table 2: Performance comparison of machine learning algorithms for soil property prediction 

 

Algorithm 
Soil Organic Carbon Soil pH Available Nitrogen 

R² RMSE MAE R² RMSE MAE R² RMSE MAE 

Random Forest 0.89 0.67 0.49 0.82 0.34 0.26 0.78 12.4 9.2 

XGBoost 0.86 0.74 0.56 0.79 0.37 0.29 0.75 13.8 10.1 

Support Vector Machine 0.81 0.89 0.67 0.75 0.41 0.32 0.69 16.2 12.5 

Neural Networks 0.83 0.82 0.61 0.77 0.39 0.30 0.72 14.9 11.3 

 

Neural Networks showed competitive performance but 

exhibited higher variability across cross-validation folds. 

Support Vector Machine demonstrated the lowest accuracy, 

particularly for available nitrogen prediction, likely due to 

challenges handling non-linear relationships in the complex 

soil-environment system. 

 

Feature Importance Analysis 

SHAP analysis revealed consistent patterns in feature 

importance across different soil properties, with elevation, 

precipitation, and NDVI emerging as the most influential 

predictors (Figure 1). For soil organic carbon, climate 

variables (precipitation, temperature) showed the highest 

importance, followed by topographic factors (elevation, 

slope) and vegetation indices. 

The SHAP dependence plots revealed complex non-linear 

relationships between environmental factors and soil 

properties. Precipitation showed a positive relationship with 

SOC up to approximately 1200 mm annually, beyond which 

the relationship plateaued. Temperature exhibited threshold 

effects, with optimal SOC accumulation occurring
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Fig 1: SHAP feature importance summary for soil organic carbon prediction 

 

between 12-18 °C mean annual temperature. 

Elevation demonstrated strong positive correlation with SOC 

in mountainous regions, likely reflecting cooler temperatures 

and reduced decomposition rates. NDVI showed consistent 

positive relationship with SOC across all study regions, 

confirming the link between vegetation productivity and soil 

carbon accumulation. 

XAI Method Consistency 

Comparison between different XAI methods revealed high 

consistency in feature importance rankings, with correlation 

coefficients exceeding 0.85 between SHAP and LIME 

explanations (Table 3). Permutation Feature Importance 

showed slightly lower correlation (0.78-0.82) but maintained 

similar ranking for the most important features. 
 

Table 3: Correlation between different XAI methods for feature importance rankings 
 

Comparison Soil Organic Carbon Soil pH Available Nitrogen Average 

SHAP vs LIME 0.87 0.85 0.89 0.87 

SHAP vs Permutation 0.82 0.78 0.84 0.81 

LIME vs Permutation 0.79 0.81 0.83 0.81 

 

Local explanations generated by LIME showed good 

agreement with SHAP for individual predictions, with 

average explanation similarity scores >0.75. This consistency 

across methods enhances confidence in the generated 

explanations and supports their reliability for decision-

making applications. 

 

Model Interpretability Insights 

XAI analysis revealed several important insights about soil-

environment relationships that traditional statistical methods 

failed to capture. Interaction effects between temperature and 

precipitation significantly influenced SOC predictions, with 

optimal conditions occurring at moderate temperature-high 

precipitation combinations. 

Topographic variables showed complex interactions, with 

slope and aspect effects varying based on elevation and 

climate conditions. In mountainous regions, north-facing 

slopes showed higher SOC content, while in flat agricultural 

areas, slope direction had minimal influence. 

The analysis identified potential model limitations and 

biases, including reduced accuracy in extreme climate 

conditions and underrepresentation of certain soil types in 

training data. These insights guide future model 

improvements and data collection strategies. 

 

Practical Applications 

SHAP waterfall plots successfully explained individual 

predictions, showing step-by-step contribution of each 

feature to final model output. These explanations enable 

farmers and agronomists to understand specific site 

conditions affecting soil properties and identify management 

opportunities. 

For example, a low SOC prediction could be attributed to 

high temperature, low precipitation, and intensive tillage 

practices, suggesting potential interventions such as cover 

cropping, reduced tillage, or organic matter addition. The 

quantitative nature of SHAP values enables prioritization of 

management actions based on their potential impact. 

 

Discussion 

The superior performance of Random Forest with XAI 

integration demonstrates that model interpretability does not 

necessarily compromise predictive accuracy [14]. The 

ensemble nature of Random Forest provides inherent 

interpretability advantages while maintaining robustness 

across diverse environmental conditions. The high feature 

importance consistency across different XAI methods 

enhances confidence in the generated explanations and 

supports their practical utility. 

The identification of precipitation, elevation, and NDVI as 

primary drivers of soil properties aligns with established soil 

science principles while revealing complex non-linear 

relationships and interactions. The threshold effects observed 

for temperature and precipitation provide valuable insights 

for predicting soil responses to climate change scenarios. 

These findings contribute to process-based understanding of 

soil-environment relationships beyond purely predictive 

applications. 
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The high consistency between SHAP and LIME explanations 

validates the reliability of XAI methods for soil property 

prediction. The slight discrepancies with Permutation Feature 

Importance likely reflect differences in explanation scope 

(local vs global) and methodology (game theory vs 

perturbation-based). This multi-method approach provides 

comprehensive understanding of model behavior and 

enhances explanation robustness. 

The practical applications demonstrated through waterfall 

plots and individual prediction explanations illustrate the 

potential for XAI to bridge the gap between complex machine 

learning models and agricultural decision-making. The 

quantitative nature of SHAP values enables evidence-based 

management recommendations and supports precision 

agriculture applications. 

The study limitations include geographic bias toward specific 

agricultural systems and limited temporal coverage. Future 

research should expand to additional soil properties, 

incorporate temporal dynamics, and evaluate XAI 

effectiveness across different user groups and decision 

contexts. Integration with economic and environmental 

impact assessments could further enhance practical utility. 

 

Conclusion 

This research demonstrates the successful integration of 

Explainable AI techniques in soil property prediction models, 

achieving high accuracy while maintaining transparency and 

interpretability. The Random Forest model with SHAP 

analysis emerged as the optimal combination, providing 

accurate predictions with comprehensive explanations of 

underlying decision processes. 

Key findings include the identification of precipitation, 

elevation, and NDVI as primary drivers of soil properties, 

with complex non-linear relationships and threshold effects 

revealed through XAI analysis. The high consistency 

between different XAI methods (correlation >0.85) validates 

the reliability of generated explanations and supports their 

practical application in agricultural systems. 

The developed XAI framework addresses critical barriers to 

AI adoption in agriculture by providing transparent, 

trustworthy model predictions that enable informed decision-

making. The quantitative feature contributions derived from 

SHAP analysis support evidence-based management 

recommendations and precision agriculture applications. 

Future research should focus on expanding geographic 

coverage, incorporating additional soil properties, and 

evaluating XAI effectiveness across different stakeholder 

groups. Integration with process-based soil models could 

combine mechanistic understanding with data-driven 

insights, advancing digital soil mapping capabilities. 

The implementation of XAI in soil science represents a 

significant step toward trustworthy AI applications in 

agriculture, supporting sustainable farming practices and 

evidence-based policy development. This framework 

provides a foundation for broader adoption of explainable 

machine learning in environmental monitoring and natural 

resource management applications. 
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