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Abstract 
Topsoil erosion poses a significant threat to agricultural productivity and 
environmental sustainability, particularly in regions with intensive land use. This 
study evaluates topsoil erosion in a 500-hectare agricultural watershed in central Iowa, 
USA, using Unmanned Aerial Vehicle (UAV) imagery and machine learning 
techniques. High-resolution multispectral and RGB images were collected using a DJI 
Phantom 4 Pro UAV, complemented by ground truth data from 120 soil erosion 
sampling points. Random Forest (RF) and Gradient Boosting Machine (GBM) models 
were employed to predict erosion rates, incorporating variables such as slope, 
vegetation cover, and rainfall intensity. The RF model achieved a prediction accuracy 
of 88% with a root mean square error (RMSE) of 2.1 t/ha/year, outperforming GBM 
(84%, RMSE 2.5 t/ha/year). UAV-derived digital elevation models (DEMs) and 
vegetation indices significantly enhanced prediction accuracy. The study demonstrates 
the potential of UAV-based remote sensing combined with machine learning for high-
resolution erosion mapping, providing actionable insights for soil conservation  
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Introduction 

Topsoil erosion, driven by wind, water, and human activities, is a critical issue affecting soil fertility, water quality, and 

agricultural sustainability [1]. Traditional erosion assessment methods, such as field surveys and sediment traps, are labor-

intensive and limited in spatial coverage [2]. Remote sensing technologies, particularly Unmanned Aerial Vehicles (UAVs), offer 

a cost-effective and scalable solution for monitoring soil erosion at high spatial and temporal resolutions [3]. UAVs equipped 

with RGB and multispectral sensors can capture detailed topographic and vegetation data, enabling precise mapping of erosion-

prone areas [4]. 

Machine learning algorithms, such as Random Forest (RF) and Gradient Boosting Machine (GBM), have shown promise in 

modeling complex environmental processes by integrating diverse datasets [5]. These models can handle non-linear relationships 

between erosion and factors like slope, land cover, and precipitation [6]. By combining UAV-derived data with machine learning, 

this study aims to improve the accuracy and efficiency of topsoil erosion assessment. 

The study was conducted in a 500-hectare agricultural watershed in central Iowa, characterized by rolling terrain and a mix of 

corn-soybean rotations and pasturelands. The objectives are to: (1) develop a UAV-based framework for mapping topsoil 

erosion; (2) compare the performance of RF and GBM in predicting erosion rates; and (3) evaluate the contribution of UAV-

derived features to model accuracy. The findings aim to support precision soil conservation strategies. 

 

Materials and Methods 

Study Area 

The study area is a 500-hectare watershed in Boone County, Iowa (centered at 93°47′W, 42°01′N), with a temperate continental 

climate and annual precipitation of 900 mm. The landscape features loamy soils with slopes ranging from 2% to 15%, making 

it susceptible to water-induced erosion [7]. Land use includes 60% cropland (corn and soybean) and 40% pasture, with historical 

erosion rates ranging from 1 to 10 t/ha/year based on local soil surveys [8]. 
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Data Collection 

UAV Data Acquisition 

UAV data were collected using a DJI Phantom 4 Pro 

equipped with a 20-megapixel RGB camera and a Sentera 6X 

multispectral sensor. Flights were conducted in July and 

August 2022 at an altitude of 100 m, achieving a ground 

resolution of 2.5 cm for RGB images and 5 cm for 

multispectral images. A total of 10 flights covered the study 

area, with 80% image overlap to ensure accurate 

photogrammetric processing [9]. Multispectral bands included 

blue, green, red, red-edge, and near-infrared (NIR). 

 

Ground Truth Data 

Ground truth data were collected from 120 sampling points 

across the watershed. Erosion rates were measured using 

sediment traps and erosion pins over a 6-month period, with 

rates ranging from 0.5 to 12 t/ha/year. Soil samples were 

analyzed for texture and organic matter content to 

contextualize erosion patterns [10]. Sampling points were 

georeferenced using a Trimble R10 GPS with sub-meter 

accuracy. 

 

Environmental Variables 

Additional variables included rainfall intensity (derived from 

local weather stations) and soil moisture (measured using 

portable sensors). Rainfall data for 2022 showed a cumulative 

precipitation of 650 mm during the study period, with peak 

intensities of 30 mm/h [11]. 

 

Data Processing 

UAV Data Processing 

RGB images were processed using Agisoft Metashape to 

generate a Digital Elevation Model (DEM) and orthomosaics 

at 10 cm resolution. The DEM was used to derive topographic 

features, including slope, aspect, and topographic wetness 

index (TWI) [12]. Multispectral images were processed to 

calculate vegetation indices, such as Normalized Difference 

Vegetation Index (NDVI) and Soil Adjusted Vegetation 

Index (SAVI), which reflect vegetation cover and bare soil 

exposure [13]. 

 

Feature Extraction 

A feature stack was created, including UAV-derived 

variables (slope, TWI, NDVI, SAVI, RGB intensity) and 

environmental variables (rainfall intensity, soil moisture). 

Feature selection was performed using Recursive Feature 

Elimination (RFE) to identify the most predictive variables, 

reducing dimensionality and computational load [14]. 

 

Machine Learning Models 

Two machine learning models were implemented: Random 

Forest (RF) and Gradient Boosting Machine (GBM). RF was 

configured with 150 trees and a maximum depth of 12, while 

GBM used 100 boosting iterations with a learning rate of 0.1. 

Both models were trained to predict continuous erosion rates 

(t/ha/year) and classify areas into low (<3 t/ha/year), medium 

(3–7 t/ha/year), and high (>7 t/ha/year) erosion classes [15]. A 

five-fold cross-validation was used to evaluate model 

performance, with metrics including accuracy, kappa 

coefficient, and RMSE. 

 

Validation 

The dataset was split into 70% training (84 samples) and 30% 

testing (36 samples). Model performance was assessed using 

a confusion matrix for classification and RMSE for 

regression. Feature importance was calculated using RF’s 

Gini importance metric to quantify the contribution of each 

variable [16]. 

 

Results 

The RF model outperformed GBM in both classification and 

regression tasks. Table 1 summarizes the performance of the 

models across different data configurations. 

 

Table 1: Model Performance for Topsoil Erosion Prediction 
 

Model Data Source Classification Accuracy (%) Kappa RMSE (t/ha/year) 

RF UAV RGB 75 0.68 3.2 

RF UAV Multispectral 80 0.73 2.8 

RF Fused (UAV + Env.) 88 0.82 2.1 

GBM UAV RGB 72 0.65 3.5 

GBM UAV Multispectral 78 0.70 3.0 

GBM Fused (UAV + Env.) 84 0.78 2.5 

 

The fused dataset (UAV RGB, multispectral, and 

environmental variables) yielded the highest accuracy (88% 

for RF) and lowest RMSE (2.1 t/ha/year). Figure 1 illustrates 

the feature importance for the RF model, highlighting the 

dominance of slope and NDVI. 

 

 
 

Fig 1: Feature Importance for Topsoil Erosion Prediction 
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Table 2 presents the confusion matrix for the RF model with fused data, showing high precision for high erosion areas (92%). 
 

Table 2: Confusion Matrix for RF Model (Fused Data) 
 

Predicted \ Actual Low Erosion Medium Erosion High Erosion 

Low Erosion 12 1 0 

Medium Erosion 2 15 2 

High Erosion 0 2 14 

Figure 2 shows the predicted vs. observed erosion rates, indicating strong model performance. 
 

 
 

Fig 2: Predicted vs. Observed Erosion Rates 

 

Discussion 

The integration of UAV-derived topographic and 

multispectral data with environmental variables significantly 

improved erosion prediction accuracy. Slope and NDVI were 

the most influential predictors, reflecting the role of terrain 

and vegetation cover in controlling erosion [12]. The high 

resolution of UAV data (2.5–5 cm) enabled the detection of 

fine-scale erosion features, such as rills and gullies, which are 

often missed by satellite-based approaches [3]. 

Compared to prior studies, our RF model’s accuracy (88%) 

exceeds that of satellite-based erosion models, which 

typically report accuracies of 70–80% [17]. The inclusion of 

multispectral data, particularly NDVI, enhanced model 

performance by capturing vegetation effects on soil stability 
[13]. However, challenges include the limited temporal 

coverage of UAV flights and the need for frequent data 

collection to monitor seasonal erosion dynamics [9]. 

Future research could incorporate time-series UAV data to 

capture temporal variations and explore deep learning models 

for improved feature extraction [5]. Additionally, integrating 

UAV data with satellite imagery could extend the spatial 

scale of erosion assessments while maintaining high 

resolution. 

 

Conclusion 

This study demonstrates the effectiveness of combining 

UAV-based remote sensing with machine learning for 

assessing topsoil erosion. The RF model, leveraging fused 

UAV and environmental data, achieved an accuracy of 88% 

and an RMSE of 2.1 t/ha/year, offering a robust tool for high-

resolution erosion mapping. These findings support precision 

soil conservation by identifying erosion hotspots for targeted 

interventions. Future work should focus on scaling the 

approach and incorporating temporal data to enhance erosion 

monitoring. 
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