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Introduction

Topsoil erosion, driven by wind, water, and human activities, is a critical issue affecting soil fertility, water quality, and
agricultural sustainability ™. Traditional erosion assessment methods, such as field surveys and sediment traps, are labor-
intensive and limited in spatial coverage 1. Remote sensing technologies, particularly Unmanned Aerial Vehicles (UAVs), offer
a cost-effective and scalable solution for monitoring soil erosion at high spatial and temporal resolutions Bl. UAVs equipped
with RGB and multispectral sensors can capture detailed topographic and vegetation data, enabling precise mapping of erosion-
prone areas [,

Machine learning algorithms, such as Random Forest (RF) and Gradient Boosting Machine (GBM), have shown promise in
modeling complex environmental processes by integrating diverse datasets I, These models can handle non-linear relationships
between erosion and factors like slope, land cover, and precipitation [, By combining UAV-derived data with machine learning,
this study aims to improve the accuracy and efficiency of topsoil erosion assessment.

The study was conducted in a 500-hectare agricultural watershed in central lowa, characterized by rolling terrain and a mix of
corn-soybean rotations and pasturelands. The objectives are to: (1) develop a UAV-based framework for mapping topsoil
erosion; (2) compare the performance of RF and GBM in predicting erosion rates; and (3) evaluate the contribution of UAV -
derived features to model accuracy. The findings aim to support precision soil conservation strategies.

Materials and Methods

Study Area

The study area is a 500-hectare watershed in Boone County, lowa (centered at 93°47'W, 42°01'N), with a temperate continental
climate and annual precipitation of 900 mm. The landscape features loamy soils with slopes ranging from 2% to 15%, making
it susceptible to water-induced erosion Il Land use includes 60% cropland (corn and soybean) and 40% pasture, with historical
erosion rates ranging from 1 to 10 t/ha/year based on local soil surveys I,
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Data Collection

UAYV Data Acquisition

UAV data were collected using a DJI Phantom 4 Pro
equipped with a 20-megapixel RGB camera and a Sentera 6X
multispectral sensor. Flights were conducted in July and
August 2022 at an altitude of 100 m, achieving a ground
resolution of 2.5 cm for RGB images and 5 cm for
multispectral images. A total of 10 flights covered the study
area, with 80% image overlap to ensure accurate
photogrammetric processing 1. Multispectral bands included
blue, green, red, red-edge, and near-infrared (NIR).

Ground Truth Data

Ground truth data were collected from 120 sampling points
across the watershed. Erosion rates were measured using
sediment traps and erosion pins over a 6-month period, with
rates ranging from 0.5 to 12 t/ha/year. Soil samples were
analyzed for texture and organic matter content to
contextualize erosion patterns 9. Sampling points were
georeferenced using a Trimble R10 GPS with sub-meter
accuracy.

Environmental Variables
Additional variables included rainfall intensity (derived from
local weather stations) and soil moisture (measured using
portable sensors). Rainfall data for 2022 showed a cumulative
precipitation of 650 mm during the study period, with peak
intensities of 30 mm/h (24,

Data Processing

UAV Data Processing

RGB images were processed using Agisoft Metashape to
generate a Digital Elevation Model (DEM) and orthomosaics
at 10 cm resolution. The DEM was used to derive topographic
features, including slope, aspect, and topographic wetness
index (TWI) 2, Multispectral images were processed to
calculate vegetation indices, such as Normalized Difference
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Vegetation Index (NDVI) and Soil Adjusted Vegetation
Index (SAVI), which reflect vegetation cover and bare soil
exposure 131,

Feature Extraction

A feature stack was created, including UAV-derived
variables (slope, TWI, NDVI, SAVI, RGB intensity) and
environmental variables (rainfall intensity, soil moisture).
Feature selection was performed using Recursive Feature
Elimination (RFE) to identify the most predictive variables,
reducing dimensionality and computational load [*41,

Machine Learning Models

Two machine learning models were implemented: Random
Forest (RF) and Gradient Boosting Machine (GBM). RF was
configured with 150 trees and a maximum depth of 12, while
GBM used 100 boosting iterations with a learning rate of 0.1.
Both models were trained to predict continuous erosion rates
(t/halyear) and classify areas into low (<3 t/ha/year), medium
(37 t/halyear), and high (>7 t/ha/year) erosion classes [*%1. A
five-fold cross-validation was used to evaluate model
performance, with metrics including accuracy, kappa
coefficient, and RMSE.

Validation

The dataset was split into 70% training (84 samples) and 30%
testing (36 samples). Model performance was assessed using
a confusion matrix for classification and RMSE for
regression. Feature importance was calculated using RF’s
Gini importance metric to quantify the contribution of each
variable 161,

Results

The RF model outperformed GBM in both classification and
regression tasks. Table 1 summarizes the performance of the
models across different data configurations.

Table 1: Model Performance for Topsoil Erosion Prediction

Model Data Source Classification Accuracy (%) |Kappa| RMSE (t/ha/year)
RF UAV RGB 75 0.68 3.2
RF UAV Multispectral 80 0.73 2.8
RF | Fused (UAV + Env.) 88 0.82 21

GBM UAV RGB 72 0.65 3.5

GBM | UAV Multispectral 78 0.70 3.0

GBM | Fused (UAV + Env.) 84 0.78 2.5

The fused dataset (UAV RGB, multispectral, and
environmental variables) yielded the highest accuracy (88%
for RF) and lowest RMSE (2.1 t/halyear). Figure 1 illustrates

the feature importance for the RF model, highlighting the
dominance of slope and NDVI.
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Fig 1: Feature Importance for Topsoil Erosion Prediction
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Table 2 presents the confusion matrix for the RF model with fused data, showing high precision for high erosion areas (92%).

Table 2: Confusion Matrix for RF Model (Fused Data)

Predicted \ Actual Low Erosion Medium Erosion High Erosion
Low Erosion 12 1 0
Medium Erosion 2 15 2
High Erosion 0 2 14

Figure 2 shows the predicted vs. observed erosion rates, indicating strong model performance.
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Fig 2: Predicted vs. Observed Erosion Rates

Discussion

The integration of UAV-derived topographic and
multispectral data with environmental variables significantly
improved erosion prediction accuracy. Slope and NDVI were
the most influential predictors, reflecting the role of terrain
and vegetation cover in controlling erosion 4. The high
resolution of UAV data (2.5-5 cm) enabled the detection of
fine-scale erosion features, such as rills and gullies, which are
often missed by satellite-based approaches [,

Compared to prior studies, our RF model’s accuracy (88%)
exceeds that of satellite-based erosion models, which
typically report accuracies of 70-80% . The inclusion of
multispectral data, particularly NDVI, enhanced model
performance by capturing vegetation effects on soil stability
(13 However, challenges include the limited temporal
coverage of UAV flights and the need for frequent data
collection to monitor seasonal erosion dynamics [,

Future research could incorporate time-series UAV data to
capture temporal variations and explore deep learning models
for improved feature extraction 1. Additionally, integrating
UAYV data with satellite imagery could extend the spatial
scale of erosion assessments while maintaining high
resolution.

Conclusion

This study demonstrates the effectiveness of combining
UAV-based remote sensing with machine learning for
assessing topsoil erosion. The RF model, leveraging fused
UAYV and environmental data, achieved an accuracy of 88%
and an RMSE of 2.1 t/ha/year, offering a robust tool for high-
resolution erosion mapping. These findings support precision
soil conservation by identifying erosion hotspots for targeted
interventions. Future work should focus on scaling the
approach and incorporating temporal data to enhance erosion
monitoring.

References

1. Pimentel D. Soil erosion: A food and environmental
threat. Environment, Development and Sustainability.
2006;8(1):119-137.

2. Morgan RPC. Soil Erosion and Conservation. 3™ ed.
Oxford (UK): Blackwell Publishing; c2005.

3. Colomina I, Molina P. Unmanned aerial systems for
photogrammetry and remote sensing: A review. ISPRS
Journal of Photogrammetry and Remote Sensing.
2014;92:79-97.

4. Anderson K, Gaston KJ. Lightweight unmanned aerial
vehicles will revolutionize spatial ecology. Frontiers in
Ecology and the Environment. 2013;11(3):138-146.

5. Breiman L. Random forests. Machine Learning.
2001;45(1):5-32.

6. Friedman JH. Greedy function approximation: A
gradient boosting machine. Annals of Statistics.
2001;29(5):1189-1232.

7. Lal R. Soil erosion impact on agronomic productivity
and environment quality. Critical Reviews in Plant
Sciences. 1998;17(4):319-464.

8. Nearing MA, Pruski FF, O’Neal MR. Expected climate
change impacts on soil erosion rates: A review. Journal
of Soil and Water Conservation. 2004;59(1):43-50.

9. D’Oleire-Oltmanns S, Marzolff I, Peter KD, Ries JB.
Unmanned aerial vehicle (UAV) for monitoring soil
erosion in Morocco. Remote Sensing. 2012;4(11):3390—
3416.

10. Gee GW, Bauder JW. Particle-size analysis. In: Klute A,
editor. Methods of Soil Analysis: Part 1—Physical and
Mineralogical Methods. 2" ed. Madison (W1): American
Society of Agronomy; c1986. p. 383-411.

11. Wischmeier WH, Smith DD. Predicting Rainfall Erosion
Losses: A Guide to Conservation Planning. USDA
Handbook No. 537. Washington (DC): United States

30|Page



Journal of Soil Future Research

12.

13.

14.

15.

16.

17.

Department of Agriculture; c1978.

Moore ID, Grayson RB, Ladson AR. Digital terrain
modelling: A review of hydrological, geomorphological,
and biological applications. Hydrological Processes.
1991;5(1):3-30.

Huete AR. A soil-adjusted vegetation index (SAVI).
Remote Sensing of Environment. 1988;25(3):295-309.

Guyon |, Elisseeff A. An introduction to variable and
feature selection. Journal of Machine Learning Research.
2003;3:1157-1182.

Kohavi R. A study of cross-validation and bootstrap for
accuracy estimation and model selection. Proceedings of
the 14th International Joint Conference on Artificial
Intelligence (1JCAI). 1995;14(2):1137-1145.

Louppe G, Wehenkel L, Sutera A, Geurts P.
Understanding variable importances in forests of
randomized trees. Advances in Neural Information
Processing Systems. 2013;26:431-439.

Ganasri BP, Ramesh H. Assessment of soil erosion by
RUSLE model using remote sensing and GIS: A case
study of Nethravathi Basin. Geoscience Frontiers.
2016;7(6):953-961.

www.soilfuturejournal.com

31|Page



