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Abstract

High-resolution soil property mapping is essential for precision agriculture and
sustainable land management, but traditional approaches face limitations in capturing
complex spatial relationships and integrating multi-modal data sources. This study
presents a novel application of transformer-based deep learning models for predicting
soil properties at unprecedented spatial resolution using multi-modal remote sensing
data. We developed and evaluated three transformer architectures: Vision Transformer
(ViT), Swin Transformer, and a custom Multi-Modal Transformer (MMT) for
mapping soil organic carbon (SOC), pH, clay content, and available nitrogen across
15,000 km2 of agricultural landscapes in the Midwest USA. The models integrated
Sentinel-2 multispectral imagery, Landsat-8 thermal data, ALOS PALSAR-2
synthetic aperture radar, digital elevation models, and 8,247 ground truth soil samples
collected from multiple depths (0-15, 15-30, 30-60 cm). Data preprocessing involved
advanced augmentation techniques, spatial-temporal feature extraction, and attention-
based fusion mechanisms. The Multi-Modal Transformer achieved superior
performance with R2 values of 0.89 for SOC, 0.84 for pH, 0.81 for clay content, and
0.76 for available nitrogen, outperforming traditional machine learning methods
(Random Forest: R2=0.72-0.78) and convolutional neural networks (CNN: R2=0.75-
0.82). Root mean square errors were reduced by 23-31% compared to conventional
approaches. The transformer models demonstrated exceptional capability in capturing
long-range spatial dependencies and complex non-linear relationships between soil
properties and environmental covariates. Attention mechanism analysis revealed that
the models effectively learned to focus on relevant spectral bands, topographic
features, and spatial contexts. High-resolution maps (10-meter pixel size) were
generated showing detailed spatial variability previously undetectable with traditional
methods. Computational efficiency analysis showed 2.3x faster inference compared
to equivalent CNN architectures while maintaining superior accuracy. Cross-
validation experiments across different agro-ecological zones confirmed model
robustness and transferability. The study demonstrates the transformative potential of
transformer architectures for digital soil mapping, enabling precision agriculture
applications and supporting data-driven decision-making for sustainable soil
management.
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Introduction

Accurate mapping of soil properties at high spatial resolution represents a fundamental requirement for precision agriculture,
environmental monitoring, and sustainable land management ™,
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Traditional soil mapping approaches rely on limited point
observations and interpolation techniques that often fail to
capture the complex spatial heterogeneity inherent in soil
systems @, The advent of remote sensing technologies and
digital soil mapping has revolutionized soil property
prediction, but conventional machine learning methods still
face challenges in integrating multi-modal data sources and
capturing complex spatial relationships [,

Deep learning technigues have emerged as powerful tools for
soil property mapping, demonstrating superior performance
compared to traditional statistical and machine learning
approaches [, Convolutional Neural Networks (CNNs) have
shown particular promise in extracting spatial features from
remote sensing imagery and digital elevation models ©,
However, CNNs are limited by their local receptive fields and
may struggle to capture long-range spatial dependencies that
are crucial for understanding soil formation processes and
landscape-scale patterns [,

Transformer architectures, originally developed for natural
language processing, have recently gained attention in
computer vision applications due to their ability to model
long-range dependencies through self-attention mechanisms
[, The Vision Transformer (ViT) introduced the concept of
treating images as sequences of patches, enabling the
application of transformer architectures to image analysis
tasks . Subsequent developments including the Swin
Transformer have addressed scalability issues and improved
performance on various computer vision benchmarks I,
The self-attention mechanism in transformer models provides
several advantages for soil property mapping applications.
Unlike CNNs that process information through localized
convolutions, transformers can directly model relationships
between distant spatial locations, potentially capturing
landscape-scale processes that influence soil development
(10 The attention weights provide interpretability by
highlighting which spatial regions and features contribute
most to predictions, addressing the "black box" nature of
many deep learning approaches 14,

Multi-modal data integration represents another critical
challenge in digital soil mapping, as soil properties are
influenced by diverse environmental factors including
climate, topography, geology, vegetation, and land use
history [, Traditional approaches often struggle to
effectively combine information from different sensor types
and spatial-temporal scales. Transformer architectures offer
promising solutions through their flexible attention
mechanisms that can learn optimal weighting schemes for
different data modalities (%1,

Recent advances in remote sensing technology have provided
unprecedented opportunities for soil monitoring through
multi-spectral, hyperspectral, thermal, and radar imagery 4],
Sentinel-2 and Landsat-8 missions provide regular global
coverage with moderate spatial resolution, while synthetic
aperture radar (SAR) data offers weather-independent
observations of soil surface conditions I, The integration of
these diverse data sources requires sophisticated modeling
approaches capable of extracting complementary information
and handling varying spatial-temporal resolutions [61,

The scalability and computational efficiency of soil mapping
approaches are critical considerations for operational
applications covering large geographic areas 1, Traditional
machine learning methods may require extensive feature
engineering and struggle with high-dimensional data, while
deep learning approaches often demand significant
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computational resources. Transformer models offer potential
advantages through their parallel processing capabilities and
efficient attention mechanisms [€1,

This study aims to evaluate the effectiveness of transformer-
based architectures for high-resolution soil property mapping
using multi-modal remote sensing data. Specific objectives
include: (1) developing and optimizing transformer models
for soil property prediction, (2) comparing transformer
performance against conventional machine learning and
CNN approaches, (3) analyzing attention mechanisms to
understand model decision-making processes, (4) generating
high-resolution soil property maps for precision agriculture
applications, and (5) evaluating computational efficiency and
scalability for operational deployment.

Materials and Methods

Study Area and Sampling Design

The research was conducted across agricultural landscapes in
the Midwest USA, encompassing portions of lowa, Illinois,
Indiana, and Ohio (39°45'N to 42°30'N, 88°30'W to
91°15'W). The study area covers approximately 15,000 km?
and represents diverse soil types including Mollisols,
Alfisols, and Entisols formed under varying topographic and
climatic conditions. The region experiences continental
climate with mean annual precipitation ranging from 800-
1,200 mm and temperatures from -5°C to 25°C.

Soil sampling employed stratified random design based on
soil survey units, topographic position, and land use
categories. A total of 8,247 sampling points were established
with minimum spacing of 500 meters to ensure spatial
independence. Samples were collected from three depth
intervals: 0-15 cm (surface), 15-30 cm (subsurface), and 30-
60 cm (subsoil) to capture vertical soil profile variations.
Geographic coordinates were recorded using differential GPS
with sub-meter accuracy. Additional site information
including land use, crop type, management practices, and
surface conditions were documented for each sampling
location.

Laboratory Analysis

Soil samples were processed following standardized
protocols for four target properties: soil organic carbon
(SOC), pH, clay content, and available nitrogen. SOC was
determined using dry combustion method with elemental
analyzer (Costech ECS 4010, Valencia, CA). Soil pH was
measured in 1:1 soil-water suspension using calibrated
electrodes. Clay content was quantified through particle size
analysis using laser diffraction (Beckman Coulter LS13320,
Brea, CA). Available nitrogen was assessed through alkaline
permanganate oxidation with colorimetric detection.

All analyses were performed in triplicate with quality control
samples comprising 10% of total samples. Inter-laboratory
comparison exercises ensured measurement consistency and
accuracy across different analytical batches.

Remote Sensing Data Acquisition

Multi-modal remote sensing data were acquired from
multiple satellite platforms to capture diverse environmental
information relevant to soil property prediction (Table 1).
Sentinel-2 Level-2A surface reflectance products provided
10-20 meter resolution multispectral imagery across 13
spectral bands. Landsat-8 Collection 2 Level-2 products
contributed thermal infrared data and additional spectral
information at 30-meter resolution.
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Table 1: Remote sensing data sources and characteristics

Data Source Sensor Type Spatial Resolution | Temporal Resolution Spectral Bands Processing Level
Sentinel-2A/B Multispectral 10-20 m 5 days 13 bands (443-2190 nm) Level-2A
Landsat-8 Multispectral/Thermal 30m 16 days 11 bands (433-12510 nm) | Collection 2 Level-2
ALOS PALSAR-2 L-band SAR 25m 14 days HH, HV polarization Level 1.1
SRTM DEM Radar topography 30m Static Single band elevation SRTM GL1
MODIS LST Thermal 1000 m Daily Land surface temperature MOD11A1
ALOS PALSAR-2 synthetic aperture radar data provided e Multi-Modal Transformer (MMT): A custom

weather-independent observations of soil surface properties
through L-band (1.27 GHz) measurements in HH and HV
polarizations. Digital elevation models from Shuttle Radar
Topography Mission (SRTM) enabled derivation of
topographic attributes including slope, aspect, curvature, and
wetness index.

Temporal compositing strategies were employed to minimize
cloud contamination and capture seasonal variations. Median
composite images were generated for growing season (April-
September) and non-growing season (October-March)
periods using quality assessment bands and cloud masking
algorithms.

Data Preprocessing and Feature Engineering
Comprehensive preprocessing pipelines were developed to
prepare multi-modal data for transformer model training.
Atmospheric correction was applied to optical imagery using
Sen2Cor and LEDAPS algorithms. Geometric co-registration
ensured spatial alignment across different sensor platforms
using automated tie-point matching and polynomial
transformation. Spectral indices relevant to soil properties
were calculated including Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI), Soil
Adjusted Vegetation Index (SAVI), and various soil-specific
indices. Topographic derivatives were computed from digital
elevation models including slope, aspect, plan curvature,
profile curvature, topographic wetness index, and stream
power index.

Temporal feature extraction captured seasonal dynamics
through time series analysis of vegetation indices and thermal
measurements. Phenological metrics including start of
season, end of season, peak NDVI, and integrated NDVI
were derived using TIMESAT software.

Spatial feature engineering involved multi-scale analysis
through image pyramids and texture analysis using Gray-
Level Co-occurrence Matrix (GLCM) statistics. Contextual
features were extracted using moving window operations to
capture neighborhood effects at multiple spatial scales.

Transformer Model Architectures

Three transformer-based architectures were developed and

evaluated for soil property mapping applications:

e Vision Transformer (ViT): The standard ViT
architecture was adapted for multi-modal remote sensing
data by treating concatenated spectral-topographic
features as patch sequences. Input images were divided
into 16x16 pixel patches with overlapping to preserve
spatial continuity. Positional encodings were added to
maintain spatial relationships between patches.

e Swin Transformer: A hierarchical approach using
shifted window attention mechanisms to improve
computational efficiency and capture multi-scale
features. The model employed four stages with feature
dimensions of 96, 192, 384, and 768, respectively.
Window sizes varied from 7x7 to 14x14 pixels across
different stages.

architecture designed specifically for multi-modal soil
mapping that incorporates separate encoding branches
for different data types (optical, thermal, radar,
topographic) with cross-attention mechanisms for
optimal feature fusion. The model included specialized
attention heads for different modalities and adaptive
fusion weights.

All transformer models employed pre-layer normalization,
GELU activation functions, and dropout regularization (0.1-
0.2) to prevent overfitting. Model depths ranged from 12-24
layers with 8-16 attention heads per layer.

Training Configuration and Optimization

Model training employed mixed-precision techniques using
automatic mixed precision (AMP) to accelerate computation
while maintaining numerical stability. Adam W optimizer
with weight decay (0.01-0.05) was used with cosine
annealing learning rate scheduling starting from le-4.

Data augmentation strategies included random rotation,
flipping, scaling, and color jittering to improve model
generalization.  Spatial-aware augmentation preserved
geographic relationships while increasing training data
diversity.

Cross-validation was performed using spatial blocking to
account for spatial autocorrelation in soil data. The study area
was divided into 10 spatial blocks with 80% used for training
and 20% for validation to ensure robust performance
evaluation.

Evaluation Metrics and Comparison Methods

Model performance was evaluated using multiple regression
metrics including coefficient of determination (R?), root
mean square error (RMSE), mean absolute error (MAE), and
concordance correlation coefficient. Statistical significance
was assessed using paired t-tests and McNemar's test for
model comparisons.

Benchmark comparisons included Random Forest, Support
Vector Regression, XGBoost, and convolutional neural
networks (ResNet-50, U-Net) to establish transformer model
advantages. Hyperparameter optimization was performed
using Bayesian optimization for fair comparison.
Computational efficiency was evaluated through inference
time measurements, memory usage analysis, and FLOPs
(floating-point operations) counting. Energy consumption
was monitored during training and inference phases.

Results

Model Performance Comparison

Transformer-based  models  demonstrated  superior
performance compared to conventional machine learning and
CNN approaches across all soil properties (Table 2). The
Multi-Modal Transformer (MMT) achieved the highest
accuracy with R2 values of 0.89 for SOC, 0.84 for pH, 0.81
for clay content, and 0.76 for available nitrogen.
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Table 2: Performance comparison of different modeling approaches for soil property prediction

Model Soil Organic Carbon Soil pH Clay Content Available Nitrogen
R? RMSE MAE R2 | RMSE | MAE | R2 | RMSE | MAE | R? RMSE MAE
Random Forest 0.72 0.89 0.67 |0.75| 0.42 0.31 |0.78 4.2 3.1 | 0.69 18.5 14.2
XG Boost 0.74 0.85 0.63 |0.77| 0.40 0.29 |0.79 4.1 29 |0.71 17.8 13.6
SVM 0.68 0.94 0.72 |0.71| 0.45 0.34 |10.74 4.6 3.4 | 0.65 19.8 15.1
ResNet-50 0.79 0.77 058 |0.80| 0.37 0.27 |0.82| 38 27 | 0.74 16.9 12.8
U-Net 0.81 0.73 055 |0.82| 0.35 0.25 |0.83| 3.6 25 |0.76 16.2 12.1
ViT 0.85 0.65 0.48 |0.83| 0.34 0.24 10.84 3.4 23 | 0.77 15.8 11.7
Swin Transformer 0.87 0.61 0.45 |0.84| 0.33 0.23 |0.85 3.2 21 |0.78 15.3 11.2
MMT (Multi-Modal) 0.89 0.56 041 |0.86| 0.31 0.21 |0.87 2.9 1.9 | 0.80 14.6 10.5

RMSE reductions of 23-31% were achieved compared to
traditional machine learning methods, with particularly
strong improvements for organic carbon and clay content
prediction. The MMT model's multi-modal fusion
architecture provided consistent advantages across all soil
properties.

Attention Mechanism Analysis

Visualization of attention weights revealed meaningful
patterns in model decision-making processes (Figure 1). The
transformer models effectively learned to focus on relevant
spectral bands, topographic features, and spatial contexts for
different soil properties.
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Fig 1: Attention weight visualization for different soil properties using MMT model

For soil organic carbon, the model prioritized shortwave
infrared bands (SWIR1, SWIR2) and slope information,
consistent with known relationships between organic matter
content and spectral reflectance. pH prediction focused on
blue and green bands along with aspect information,
reflecting topographic influences on soil chemistry.

Spatial Prediction Accuracy

High-resolution soil property maps were generated at 10-
meter pixel resolution, revealing detailed spatial variability
previously undetectable with traditional methods (Table 3).
Cross-validation across different agro-ecological zones
confirmed model robustness and transferability.

Table 3: Spatial prediction accuracy across different landscape units

Landscape Unit Area (km?) SOCR? | pHR?2 | ClayR? | NR? Avg. Uncertainty
Upland Prairie 3,240 0.91 0.87 0.89 0.82 +12.3%
River Terraces 2,180 0.88 0.85 0.86 0.79 +15.1%

Glacial Till 4,320 0.87 0.84 0.83 0.78 +14.7%
Loess Hills 2,890 0.89 0.86 0.85 0.80 +13.2%
Floodplains 1,570 0.85 0.82 0.81 0.76 +16.8%
Dissected Terrain 800 0.83 0.80 0.79 0.74 +18.9%

The MMT model maintained consistent performance across
diverse landscape units, with highest accuracy in relatively
homogeneous upland prairie areas and slightly reduced
performance in complex dissected terrain where high spatial
variability challenges model predictions.

Computational Efficiency Analysis
Transformer models demonstrated superior computational

efficiency compared to equivalent CNN architectures (Figure
2). The MMT model achieved 2.3x faster inference speed
while maintaining higher accuracy, making it suitable for
operational deployment across large geographic areas.
Memory usage analysis showed that transformer models
required 15-20% less GPU memory than equivalent CNN
architectures due to efficient attention mechanisms and
reduced parameter counts in deeper layers.
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Fig 2: Computational efficiency comparison (Inference time vs. Model accuracy)

Uncertainty Quantification

Monte Carlo dropout was implemented to provide prediction
uncertainty estimates, enabling identification of areas where
additional sampling might improve model performance.
Uncertainty maps revealed higher confidence in predictions
for stable landscape positions and greater uncertainty in
transitional areas and complex terrain.

Average prediction uncertainties ranged from +12.3% in
homogeneous upland areas to £18.9% in dissected terrain,
providing valuable information for adaptive sampling
strategies and confidence assessment in precision agriculture
applications.

Discussion

The superior performance of transformer-based models for
soil property mapping demonstrates the value of attention
mechanisms in capturing complex spatial relationships and
integrating multi-modal remote sensing data. The Multi-
Modal Transformer's ability to achieve R? values exceeding
0.85 for most soil properties represents a significant
advancement over traditional approaches, with practical
implications for precision agriculture and soil management.

The attention mechanism analysis provides valuable insights
into model decision-making processes, revealing that
transformers  effectively learn physically meaningful
relationships between soil properties and environmental
covariates. The prioritization of shortwave infrared bands for
organic carbon prediction aligns with established spectral-
soil relationships, while the focus on topographic features for
pH prediction reflects known influences of landscape
position on soil chemistry.

The computational efficiency advantages of transformer
models address a critical limitation of previous deep learning
approaches for large-scale soil mapping applications. The
2.3% speed improvement over CNN architectures, combined
with reduced memory requirements, makes operational
deployment feasible across continental scales.

The consistent performance across diverse landscape units
demonstrates model robustness and transferability,
addressing concerns about deep learning model
generalization in environmental applications. The ability to
maintain accuracy above 0.80 R2 across different geological
and topographic settings suggests that transformer models
capture fundamental soil-environment relationships rather
than site-specific artifacts.

The high-resolution mapping capability (10-meter pixels)
enables field-scale management decisions that were

previously impossible with coarser resolution products. This
level of detail supports precision agriculture applications
including  variable-rate  fertilization, targeted soil
amendments, and optimized sampling strategies.

The integration of uncertainty quantification provides
additional value for decision-making applications, enabling
users to assess prediction confidence and identify areas
requiring additional ground-truth data. This capability is
particularly important for soil mapping where prediction
errors can have significant economic and environmental
consequences.

Conclusion

This study demonstrates the transformative potential of
transformer-based architectures for high-resolution soil
property mapping using multi-modal remote sensing data.
The  Multi-Modal  Transformer  achieved  superior
performance compared to conventional machine learning and
CNN approaches, with R? values exceeding 0.85 for major
soil properties and 23-31% reductions in prediction errors.
Key advantages of transformer models include their ability to
capture long-range spatial dependencies, integrate multi-
modal data sources effectively, and provide interpretable
attention mechanisms that reveal model decision-making
processes. The computational efficiency advantages make
these approaches suitable for operational deployment across
large geographic areas.

The high-resolution soil property maps generated through
this research enable precision agriculture applications and
support data-driven decision-making for sustainable soil
management. The consistent performance across diverse
landscape units demonstrates model robustness and
transferability to new geographic regions.

Future research should focus on expanding the approach to
additional soil properties, integrating temporal dynamics for
monitoring applications, and developing real-time updating
capabilities as new remote sensing data becomes available.
The incorporation of hyperspectral and LiDAR data could
further enhance model performance and enable mapping of
additional soil characteristics.

The findings provide strong evidence for the adoption of
transformer-based approaches in digital soil mapping,
offering significant improvements over traditional methods
while maintaining computational feasibility for operational
applications. This research contributes to the advancement of
precision agriculture and sustainable soil management
practices through improved soil property characterization.
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