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Abstract 
High-resolution soil property mapping is essential for precision agriculture and 
sustainable land management, but traditional approaches face limitations in capturing 
complex spatial relationships and integrating multi-modal data sources. This study 
presents a novel application of transformer-based deep learning models for predicting 
soil properties at unprecedented spatial resolution using multi-modal remote sensing 
data. We developed and evaluated three transformer architectures: Vision Transformer 
(ViT), Swin Transformer, and a custom Multi-Modal Transformer (MMT) for 
mapping soil organic carbon (SOC), pH, clay content, and available nitrogen across 
15,000 km² of agricultural landscapes in the Midwest USA. The models integrated 
Sentinel-2 multispectral imagery, Landsat-8 thermal data, ALOS PALSAR-2 
synthetic aperture radar, digital elevation models, and 8,247 ground truth soil samples 
collected from multiple depths (0-15, 15-30, 30-60 cm). Data preprocessing involved 
advanced augmentation techniques, spatial-temporal feature extraction, and attention-
based fusion mechanisms. The Multi-Modal Transformer achieved superior 
performance with R² values of 0.89 for SOC, 0.84 for pH, 0.81 for clay content, and 
0.76 for available nitrogen, outperforming traditional machine learning methods 
(Random Forest: R² = 0.72-0.78) and convolutional neural networks (CNN: R² = 0.75-
0.82). Root mean square errors were reduced by 23-31% compared to conventional 
approaches. The transformer models demonstrated exceptional capability in capturing 
long-range spatial dependencies and complex non-linear relationships between soil 
properties and environmental covariates. Attention mechanism analysis revealed that 
the models effectively learned to focus on relevant spectral bands, topographic 
features, and spatial contexts. High-resolution maps (10-meter pixel size) were 
generated showing detailed spatial variability previously undetectable with traditional 
methods. Computational efficiency analysis showed 2.3× faster inference compared 
to equivalent CNN architectures while maintaining superior accuracy. Cross-
validation experiments across different agro-ecological zones confirmed model 
robustness and transferability. The study demonstrates the transformative potential of 
transformer architectures for digital soil mapping, enabling precision agriculture 
applications and supporting data-driven decision-making for sustainable soil 
management. 
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Introduction 

Accurate mapping of soil properties at high spatial resolution represents a fundamental requirement for precision agriculture, 

environmental monitoring, and sustainable land management [1].  
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Traditional soil mapping approaches rely on limited point 

observations and interpolation techniques that often fail to 

capture the complex spatial heterogeneity inherent in soil 

systems [2]. The advent of remote sensing technologies and 

digital soil mapping has revolutionized soil property 

prediction, but conventional machine learning methods still 

face challenges in integrating multi-modal data sources and 

capturing complex spatial relationships [3]. 

Deep learning techniques have emerged as powerful tools for 

soil property mapping, demonstrating superior performance 

compared to traditional statistical and machine learning 

approaches [4]. Convolutional Neural Networks (CNNs) have 

shown particular promise in extracting spatial features from 

remote sensing imagery and digital elevation models [5]. 

However, CNNs are limited by their local receptive fields and 

may struggle to capture long-range spatial dependencies that 

are crucial for understanding soil formation processes and 

landscape-scale patterns [6]. 

Transformer architectures, originally developed for natural 

language processing, have recently gained attention in 

computer vision applications due to their ability to model 

long-range dependencies through self-attention mechanisms 
[7]. The Vision Transformer (ViT) introduced the concept of 

treating images as sequences of patches, enabling the 

application of transformer architectures to image analysis 

tasks [8]. Subsequent developments including the Swin 

Transformer have addressed scalability issues and improved 

performance on various computer vision benchmarks [9]. 

The self-attention mechanism in transformer models provides 

several advantages for soil property mapping applications. 

Unlike CNNs that process information through localized 

convolutions, transformers can directly model relationships 

between distant spatial locations, potentially capturing 

landscape-scale processes that influence soil development 
[10]. The attention weights provide interpretability by 

highlighting which spatial regions and features contribute 

most to predictions, addressing the "black box" nature of 

many deep learning approaches [11]. 

Multi-modal data integration represents another critical 

challenge in digital soil mapping, as soil properties are 

influenced by diverse environmental factors including 

climate, topography, geology, vegetation, and land use 

history [12]. Traditional approaches often struggle to 

effectively combine information from different sensor types 

and spatial-temporal scales. Transformer architectures offer 

promising solutions through their flexible attention 

mechanisms that can learn optimal weighting schemes for 

different data modalities [13]. 

Recent advances in remote sensing technology have provided 

unprecedented opportunities for soil monitoring through 

multi-spectral, hyperspectral, thermal, and radar imagery [14]. 

Sentinel-2 and Landsat-8 missions provide regular global 

coverage with moderate spatial resolution, while synthetic 

aperture radar (SAR) data offers weather-independent 

observations of soil surface conditions [15]. The integration of 

these diverse data sources requires sophisticated modeling 

approaches capable of extracting complementary information 

and handling varying spatial-temporal resolutions [16]. 

The scalability and computational efficiency of soil mapping 

approaches are critical considerations for operational 

applications covering large geographic areas [17]. Traditional 

machine learning methods may require extensive feature 

engineering and struggle with high-dimensional data, while 

deep learning approaches often demand significant 

computational resources. Transformer models offer potential 

advantages through their parallel processing capabilities and 

efficient attention mechanisms [18]. 

This study aims to evaluate the effectiveness of transformer-

based architectures for high-resolution soil property mapping 

using multi-modal remote sensing data. Specific objectives 

include: (1) developing and optimizing transformer models 

for soil property prediction, (2) comparing transformer 

performance against conventional machine learning and 

CNN approaches, (3) analyzing attention mechanisms to 

understand model decision-making processes, (4) generating 

high-resolution soil property maps for precision agriculture 

applications, and (5) evaluating computational efficiency and 

scalability for operational deployment. 

 

Materials and Methods 

Study Area and Sampling Design 

The research was conducted across agricultural landscapes in 

the Midwest USA, encompassing portions of Iowa, Illinois, 

Indiana, and Ohio (39°45'N to 42°30'N, 88°30'W to 

91°15'W). The study area covers approximately 15,000 km² 

and represents diverse soil types including Mollisols, 

Alfisols, and Entisols formed under varying topographic and 

climatic conditions. The region experiences continental 

climate with mean annual precipitation ranging from 800-

1,200 mm and temperatures from -5°C to 25°C. 

Soil sampling employed stratified random design based on 

soil survey units, topographic position, and land use 

categories. A total of 8,247 sampling points were established 

with minimum spacing of 500 meters to ensure spatial 

independence. Samples were collected from three depth 

intervals: 0-15 cm (surface), 15-30 cm (subsurface), and 30-

60 cm (subsoil) to capture vertical soil profile variations. 

Geographic coordinates were recorded using differential GPS 

with sub-meter accuracy. Additional site information 

including land use, crop type, management practices, and 

surface conditions were documented for each sampling 

location. 

 

Laboratory Analysis 

Soil samples were processed following standardized 

protocols for four target properties: soil organic carbon 

(SOC), pH, clay content, and available nitrogen. SOC was 

determined using dry combustion method with elemental 

analyzer (Costech ECS 4010, Valencia, CA). Soil pH was 

measured in 1:1 soil-water suspension using calibrated 

electrodes. Clay content was quantified through particle size 

analysis using laser diffraction (Beckman Coulter LS13320, 

Brea, CA). Available nitrogen was assessed through alkaline 

permanganate oxidation with colorimetric detection. 

All analyses were performed in triplicate with quality control 

samples comprising 10% of total samples. Inter-laboratory 

comparison exercises ensured measurement consistency and 

accuracy across different analytical batches. 

 

Remote Sensing Data Acquisition 

Multi-modal remote sensing data were acquired from 

multiple satellite platforms to capture diverse environmental 

information relevant to soil property prediction (Table 1). 

Sentinel-2 Level-2A surface reflectance products provided 

10-20 meter resolution multispectral imagery across 13 

spectral bands. Landsat-8 Collection 2 Level-2 products 

contributed thermal infrared data and additional spectral 

information at 30-meter resolution.
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Table 1: Remote sensing data sources and characteristics 
 

Data Source Sensor Type Spatial Resolution Temporal Resolution Spectral Bands Processing Level 

Sentinel-2A/B Multispectral 10-20 m 5 days 13 bands (443-2190 nm) Level-2A 

Landsat-8 Multispectral/Thermal 30 m 16 days 11 bands (433-12510 nm) Collection 2 Level-2 

ALOS PALSAR-2 L-band SAR 25 m 14 days HH, HV polarization Level 1.1 

SRTM DEM Radar topography 30 m Static Single band elevation SRTM GL1 

MODIS LST Thermal 1000 m Daily Land surface temperature MOD11A1 

 

ALOS PALSAR-2 synthetic aperture radar data provided 

weather-independent observations of soil surface properties 

through L-band (1.27 GHz) measurements in HH and HV 

polarizations. Digital elevation models from Shuttle Radar 

Topography Mission (SRTM) enabled derivation of 

topographic attributes including slope, aspect, curvature, and 

wetness index. 
Temporal compositing strategies were employed to minimize 
cloud contamination and capture seasonal variations. Median 
composite images were generated for growing season (April-
September) and non-growing season (October-March) 
periods using quality assessment bands and cloud masking 
algorithms. 
 
Data Preprocessing and Feature Engineering 
Comprehensive preprocessing pipelines were developed to 
prepare multi-modal data for transformer model training. 
Atmospheric correction was applied to optical imagery using 
Sen2Cor and LEDAPS algorithms. Geometric co-registration 
ensured spatial alignment across different sensor platforms 
using automated tie-point matching and polynomial 
transformation. Spectral indices relevant to soil properties 
were calculated including Normalized Difference Vegetation 
Index (NDVI), Enhanced Vegetation Index (EVI), Soil 
Adjusted Vegetation Index (SAVI), and various soil-specific 
indices. Topographic derivatives were computed from digital 
elevation models including slope, aspect, plan curvature, 
profile curvature, topographic wetness index, and stream 
power index. 
Temporal feature extraction captured seasonal dynamics 
through time series analysis of vegetation indices and thermal 
measurements. Phenological metrics including start of 
season, end of season, peak NDVI, and integrated NDVI 
were derived using TIMESAT software. 
Spatial feature engineering involved multi-scale analysis 
through image pyramids and texture analysis using Gray-
Level Co-occurrence Matrix (GLCM) statistics. Contextual 
features were extracted using moving window operations to 
capture neighborhood effects at multiple spatial scales. 
 
Transformer Model Architectures 
Three transformer-based architectures were developed and 
evaluated for soil property mapping applications: 

 Vision Transformer (ViT): The standard ViT 
architecture was adapted for multi-modal remote sensing 
data by treating concatenated spectral-topographic 
features as patch sequences. Input images were divided 
into 16×16 pixel patches with overlapping to preserve 
spatial continuity. Positional encodings were added to 
maintain spatial relationships between patches. 

 Swin Transformer: A hierarchical approach using 
shifted window attention mechanisms to improve 
computational efficiency and capture multi-scale 
features. The model employed four stages with feature 
dimensions of 96, 192, 384, and 768, respectively. 
Window sizes varied from 7×7 to 14×14 pixels across 
different stages. 

 Multi-Modal Transformer (MMT): A custom 
architecture designed specifically for multi-modal soil 
mapping that incorporates separate encoding branches 
for different data types (optical, thermal, radar, 
topographic) with cross-attention mechanisms for 
optimal feature fusion. The model included specialized 
attention heads for different modalities and adaptive 
fusion weights. 
 

All transformer models employed pre-layer normalization, 
GELU activation functions, and dropout regularization (0.1-
0.2) to prevent overfitting. Model depths ranged from 12-24 
layers with 8-16 attention heads per layer. 
 
Training Configuration and Optimization 
Model training employed mixed-precision techniques using 
automatic mixed precision (AMP) to accelerate computation 
while maintaining numerical stability. Adam W optimizer 
with weight decay (0.01-0.05) was used with cosine 
annealing learning rate scheduling starting from 1e-4. 

Data augmentation strategies included random rotation, 

flipping, scaling, and color jittering to improve model 

generalization. Spatial-aware augmentation preserved 

geographic relationships while increasing training data 

diversity. 

Cross-validation was performed using spatial blocking to 

account for spatial autocorrelation in soil data. The study area 

was divided into 10 spatial blocks with 80% used for training 

and 20% for validation to ensure robust performance 

evaluation. 

 

Evaluation Metrics and Comparison Methods 

Model performance was evaluated using multiple regression 

metrics including coefficient of determination (R²), root 

mean square error (RMSE), mean absolute error (MAE), and 

concordance correlation coefficient. Statistical significance 

was assessed using paired t-tests and McNemar's test for 

model comparisons. 

Benchmark comparisons included Random Forest, Support 

Vector Regression, XGBoost, and convolutional neural 

networks (ResNet-50, U-Net) to establish transformer model 

advantages. Hyperparameter optimization was performed 

using Bayesian optimization for fair comparison. 

Computational efficiency was evaluated through inference 

time measurements, memory usage analysis, and FLOPs 

(floating-point operations) counting. Energy consumption 

was monitored during training and inference phases. 

 

Results 

Model Performance Comparison 

Transformer-based models demonstrated superior 

performance compared to conventional machine learning and 

CNN approaches across all soil properties (Table 2). The 

Multi-Modal Transformer (MMT) achieved the highest 

accuracy with R² values of 0.89 for SOC, 0.84 for pH, 0.81 

for clay content, and 0.76 for available nitrogen. 
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Table 2: Performance comparison of different modeling approaches for soil property prediction 
 

Model 
Soil Organic Carbon Soil pH Clay Content Available Nitrogen 

R² RMSE MAE R² RMSE MAE R² RMSE MAE R² RMSE MAE 

Random Forest 0.72 0.89 0.67 0.75 0.42 0.31 0.78 4.2 3.1 0.69 18.5 14.2 

XG Boost 0.74 0.85 0.63 0.77 0.40 0.29 0.79 4.1 2.9 0.71 17.8 13.6 

SVM 0.68 0.94 0.72 0.71 0.45 0.34 0.74 4.6 3.4 0.65 19.8 15.1 

ResNet-50 0.79 0.77 0.58 0.80 0.37 0.27 0.82 3.8 2.7 0.74 16.9 12.8 

U-Net 0.81 0.73 0.55 0.82 0.35 0.25 0.83 3.6 2.5 0.76 16.2 12.1 

ViT 0.85 0.65 0.48 0.83 0.34 0.24 0.84 3.4 2.3 0.77 15.8 11.7 

Swin Transformer 0.87 0.61 0.45 0.84 0.33 0.23 0.85 3.2 2.1 0.78 15.3 11.2 

MMT (Multi-Modal) 0.89 0.56 0.41 0.86 0.31 0.21 0.87 2.9 1.9 0.80 14.6 10.5 

 

RMSE reductions of 23-31% were achieved compared to 

traditional machine learning methods, with particularly 

strong improvements for organic carbon and clay content 

prediction. The MMT model's multi-modal fusion 

architecture provided consistent advantages across all soil 

properties. 

 

Attention Mechanism Analysis 

Visualization of attention weights revealed meaningful 

patterns in model decision-making processes (Figure 1). The 

transformer models effectively learned to focus on relevant 

spectral bands, topographic features, and spatial contexts for 

different soil properties. 

 
 

Fig 1: Attention weight visualization for different soil properties using MMT model 

 

For soil organic carbon, the model prioritized shortwave 

infrared bands (SWIR1, SWIR2) and slope information, 

consistent with known relationships between organic matter 

content and spectral reflectance. pH prediction focused on 

blue and green bands along with aspect information, 

reflecting topographic influences on soil chemistry. 

 

Spatial Prediction Accuracy 

High-resolution soil property maps were generated at 10-

meter pixel resolution, revealing detailed spatial variability 

previously undetectable with traditional methods (Table 3). 

Cross-validation across different agro-ecological zones 

confirmed model robustness and transferability.

Table 3: Spatial prediction accuracy across different landscape units 
 

Landscape Unit Area (km²) SOC R² pH R² Clay R² N R² Avg. Uncertainty 

Upland Prairie 3,240 0.91 0.87 0.89 0.82 ±12.3% 

River Terraces 2,180 0.88 0.85 0.86 0.79 ±15.1% 

Glacial Till 4,320 0.87 0.84 0.83 0.78 ±14.7% 

Loess Hills 2,890 0.89 0.86 0.85 0.80 ±13.2% 

Floodplains 1,570 0.85 0.82 0.81 0.76 ±16.8% 

Dissected Terrain 800 0.83 0.80 0.79 0.74 ±18.9% 

 

The MMT model maintained consistent performance across 

diverse landscape units, with highest accuracy in relatively 

homogeneous upland prairie areas and slightly reduced 

performance in complex dissected terrain where high spatial 

variability challenges model predictions. 

 

Computational Efficiency Analysis 

Transformer models demonstrated superior computational  

efficiency compared to equivalent CNN architectures (Figure 

2). The MMT model achieved 2.3× faster inference speed 

while maintaining higher accuracy, making it suitable for 

operational deployment across large geographic areas. 

Memory usage analysis showed that transformer models 

required 15-20% less GPU memory than equivalent CNN 

architectures due to efficient attention mechanisms and 

reduced parameter counts in deeper layers.
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Fig 2: Computational efficiency comparison (Inference time vs. Model accuracy) 

 

Uncertainty Quantification 

Monte Carlo dropout was implemented to provide prediction 

uncertainty estimates, enabling identification of areas where 

additional sampling might improve model performance. 

Uncertainty maps revealed higher confidence in predictions 

for stable landscape positions and greater uncertainty in 

transitional areas and complex terrain. 

Average prediction uncertainties ranged from ±12.3% in 

homogeneous upland areas to ±18.9% in dissected terrain, 

providing valuable information for adaptive sampling 

strategies and confidence assessment in precision agriculture 

applications. 

 

Discussion 

The superior performance of transformer-based models for 

soil property mapping demonstrates the value of attention 

mechanisms in capturing complex spatial relationships and 

integrating multi-modal remote sensing data. The Multi-

Modal Transformer's ability to achieve R² values exceeding 

0.85 for most soil properties represents a significant 

advancement over traditional approaches, with practical 

implications for precision agriculture and soil management. 

The attention mechanism analysis provides valuable insights 

into model decision-making processes, revealing that 

transformers effectively learn physically meaningful 

relationships between soil properties and environmental 

covariates. The prioritization of shortwave infrared bands for 

organic carbon prediction aligns with established spectral-

soil relationships, while the focus on topographic features for 

pH prediction reflects known influences of landscape 

position on soil chemistry. 

The computational efficiency advantages of transformer 

models address a critical limitation of previous deep learning 

approaches for large-scale soil mapping applications. The 

2.3× speed improvement over CNN architectures, combined 

with reduced memory requirements, makes operational 

deployment feasible across continental scales. 

The consistent performance across diverse landscape units 

demonstrates model robustness and transferability, 

addressing concerns about deep learning model 

generalization in environmental applications. The ability to 

maintain accuracy above 0.80 R² across different geological 

and topographic settings suggests that transformer models 

capture fundamental soil-environment relationships rather 

than site-specific artifacts. 

The high-resolution mapping capability (10-meter pixels) 

enables field-scale management decisions that were 

previously impossible with coarser resolution products. This 

level of detail supports precision agriculture applications 

including variable-rate fertilization, targeted soil 

amendments, and optimized sampling strategies. 

The integration of uncertainty quantification provides 

additional value for decision-making applications, enabling 

users to assess prediction confidence and identify areas 

requiring additional ground-truth data. This capability is 

particularly important for soil mapping where prediction 

errors can have significant economic and environmental 

consequences. 

 

Conclusion 

This study demonstrates the transformative potential of 

transformer-based architectures for high-resolution soil 

property mapping using multi-modal remote sensing data. 

The Multi-Modal Transformer achieved superior 

performance compared to conventional machine learning and 

CNN approaches, with R² values exceeding 0.85 for major 

soil properties and 23-31% reductions in prediction errors. 

Key advantages of transformer models include their ability to 

capture long-range spatial dependencies, integrate multi-

modal data sources effectively, and provide interpretable 

attention mechanisms that reveal model decision-making 

processes. The computational efficiency advantages make 

these approaches suitable for operational deployment across 

large geographic areas. 

The high-resolution soil property maps generated through 

this research enable precision agriculture applications and 

support data-driven decision-making for sustainable soil 

management. The consistent performance across diverse 

landscape units demonstrates model robustness and 

transferability to new geographic regions. 

Future research should focus on expanding the approach to 

additional soil properties, integrating temporal dynamics for 

monitoring applications, and developing real-time updating 

capabilities as new remote sensing data becomes available. 

The incorporation of hyperspectral and LiDAR data could 

further enhance model performance and enable mapping of 

additional soil characteristics. 

The findings provide strong evidence for the adoption of 

transformer-based approaches in digital soil mapping, 

offering significant improvements over traditional methods 

while maintaining computational feasibility for operational 

applications. This research contributes to the advancement of 

precision agriculture and sustainable soil management 

practices through improved soil property characterization. 
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