Federated Learning Approaches for Regional Soil Databases: Privacy-Preserving Collaborative Machine Learning for Digital Soil Mapping

Dr. Nisha Malhotra 1*, Dr. Suman Ghosh 2

1, 2 Department of Economics, Jawaharlal Nehru University, New Delhi, India

* Corresponding Author: Dr. Nisha Malhotra

Article Info

P-ISSN: 3051-3448 **E-ISSN:** 3051-3456

Volume: 06 Issue: 01

January - June 2025 Received: 01-01-2025 Accepted: 04-02-2025 Published: 06-03-2025

Page No: 07-12

Abstract

Regional soil databases contain valuable information for digital soil mapping and precision agriculture, but privacy concerns, data ownership issues, and institutional barriers often prevent effective data sharing and collaborative model development. This study presents a comprehensive evaluation of federated learning approaches for building robust soil property prediction models while preserving data privacy and institutional autonomy. We implemented and compared three federated learning architectures: Federated Averaging (FedAvg), Federated Proximal (FedProx), and a novel Soil-Specific Federated Learning (SSFL) algorithm across seven regional soil databases from different agricultural institutions in North America and Europe. The databases collectively contained 147,832 soil samples with measurements of organic carbon, pH, clay content, nitrogen, phosphorus, and potassium across diverse agroecological zones. Each institution maintained local control of their data while contributing to a global model through privacy-preserving aggregation mechanisms. The SSFL algorithm achieved superior performance with R² values of 0.87 for organic carbon, 0.84 for pH, 0.81 for clay content, and 0.79 for nitrogen compared to traditional centralized learning ($R^2 = 0.83-0.89$) and individual institutional models $(R^2 = 0.62-0.78)$. Communication efficiency was improved by 67% through gradient compression and selective parameter sharing. Differential privacy mechanisms ensured individual sample privacy with $\varepsilon = 1.2$ privacy budget while maintaining model utility. Cross-institutional validation demonstrated robust transferability with performance degradation of only 3-8% when models trained on one region were applied to another. The federated approach enabled discovery of 23% more significant soil-environment relationships compared to individual institutional analyses. Economic analysis revealed 45% cost reduction in model development compared to centralized approaches requiring data migration. Security audits confirmed protection against membership inference attacks and model inversion attacks. The study demonstrates that federated learning enables collaborative soil science research while addressing privacy, legal, and institutional constraints that traditionally limit data sharing. This approach has transformative potential for advancing digital soil mapping, supporting global soil monitoring initiatives, and enabling evidence-based agricultural decision-making across institutional boundaries.

Keywords: Federated Learning, Soil Databases, Digital Soil Mapping, Privacy-Preserving Machine Learning, Collaborative Learning, Data Privacy, Distributed Systems, Precision Agriculture

1. Introduction

Regional soil databases represent invaluable repositories of soil information collected through decades of research efforts by agricultural institutions, government agencies, and private organizations worldwide [1]. These databases contain detailed measurements of soil properties, environmental conditions, and management practices that are essential for digital soil mapping, precision agriculture, and sustainable land management. However, the full potential of these databases remains largely untapped

due to institutional silos, privacy concerns, data ownership restrictions, and legal barriers that prevent effective data sharing and collaborative analysis [2].

Traditional approaches to multi-institutional soil research require centralized data aggregation, where participating organizations transfer their data to a central repository for analysis. This approach faces numerous challenges including data sovereignty concerns, intellectual property protection, regulatory compliance issues, and technical barriers related to data standardization and integration [3]. Many institutions are reluctant to share sensitive soil and location data due to competitive considerations, privacy requirements, or legal restrictions that prohibit data transfer across institutional or national boundaries.

Federated learning has emerged as a promising paradigm that enables collaborative machine learning without requiring raw data sharing [4]. In federated learning systems, participating institutions train local models on their own data and share only model parameters or gradients with a central coordinator. This approach preserves data privacy and institutional autonomy while enabling the development of robust global models that benefit from the collective knowledge of all participants [5].

The application of federated learning to soil databases presents unique opportunities and challenges. Soil data exhibits significant spatial heterogeneity and regional variations that make local models insufficient for broader applications. However, the combination of multiple regional datasets through federated learning can capture diverse soilenvironment relationships and improve generalizability across different agro-ecological zones [6]. The heterogeneous nature of soil data, including variations in measurement protocols, sampling densities, environmental conditions, requires specialized federated learning algorithms that can handle data distribution differences while maintaining model performance.

Privacy preservation in soil databases involves multiple considerations beyond individual sample protection. Location information associated with soil samples can reveal sensitive agricultural practices, land values, and competitive intelligence. Agricultural institutions may be concerned about revealing soil quality patterns that could affect land values or competitive positions. Federated learning addresses these concerns through differential privacy mechanisms, secure aggregation protocols, and gradient compression techniques that minimize information leakage [7].

The scalability and communication efficiency of federated learning systems are critical factors for practical deployment across geographically distributed soil databases. Traditional federated learning algorithms may require frequent communication rounds and large parameter transfers that become prohibitive for institutions with limited bandwidth or computational resources [8]. Specialized approaches for soil applications must balance model performance with communication efficiency and computational requirements. Heterogeneity in federated soil databases manifests in multiple dimensions including statistical heterogeneity (different data distributions), system heterogeneity (varying computational capabilities), and temporal heterogeneity (different sampling periods and frequencies). These challenges require robust aggregation algorithms that can handle non-IID (non-independent and identically distributed) data while maintaining convergence guarantees and model stability [9].

The evaluation of federated learning systems for soil applications requires comprehensive assessment of model performance, privacy preservation, communication efficiency, and practical deployment considerations. Traditional machine learning evaluation metrics must be supplemented with privacy-specific measures, communication cost analysis, and robustness assessments under various attack scenarios [10].

Regulatory and legal frameworks surrounding agricultural data sharing vary significantly across jurisdictions, creating additional complexity for federated learning deployment. The General Data Protection Regulation (GDPR) in Europe, various national data protection laws, and institutional data policies must be considered when designing federated learning systems for soil databases [11].

This study aims to develop and evaluate federated learning approaches specifically designed for regional soil databases, addressing the unique challenges and opportunities in collaborative soil science research. Specific objectives include: (1) designing federated learning algorithms optimized for soil data characteristics, (2) evaluating privacy preservation mechanisms for agricultural applications, (3) assessing communication efficiency and scalability across distributed institutions, (4) quantifying model performance improvements from collaborative learning, and (5) analyzing practical deployment considerations for real-world implementation [12].

The research addresses a critical gap in soil science methodology by enabling collaborative model development while respecting institutional boundaries and privacy requirements. The findings have implications for global soil monitoring initiatives, international agricultural research collaboration, and the development of more robust digital soil mapping products that benefit from diverse regional expertise and data resources [13].

Materials and Methods Federated Learning Architecture Design

Three federated learning architectures were implemented and evaluated for regional soil database integration. The Federated Averaging (FedAvg) algorithm served as the baseline approach, implementing standard parameter averaging across participating institutions. The Federated Proximal (FedProx) algorithm addressed data heterogeneity through proximal term regularization that constrains local model updates. A novel Soil-Specific Federated Learning (SSFL) algorithm was developed specifically for soil applications, incorporating domain knowledge about soil-environment relationships and adaptive aggregation mechanisms.

The SSFL algorithm includes specialized components for handling soil data characteristics:

- Spatial-aware aggregation weights based on geographic proximity and climatic similarity
- Soil-property-specific learning rates that account for measurement uncertainties
- Adaptive communication schedules that reduce update frequency for stable soil properties
- Domain-constrained model architectures that enforce physically meaningful relationships

All federated learning implementations employed secure aggregation protocols to prevent individual gradient

inference and differential privacy mechanisms to provide formal privacy guarantees. The system architecture supported asynchronous participation to accommodate varying computational capabilities and availability across institutions.

Participating Institutions and Databases

Seven regional soil databases from major agricultural institutions participated in the federated learning evaluation (Table 1). The institutions represent diverse geographic regions, climatic conditions, and agricultural systems to ensure comprehensive evaluation of federated learning performance across different environments.

Table 1: Participating institutions and database characteristics

Institution	Location	Climate Zone	Samples	Soil Properties	Sampling Period	Data Format
USDA-NRCS	Midwest USA	Continental	28,450	SOC, pH, Clay, N, P, K	1980-2020	SQL Database
Agriculture Canada	Prairie Canada	Continental	21,680	SOC, pH, Clay, N, P	1985-2021	CSV Files
INRA France	Loire Valley	Temperate	19,240	SOC, pH, Clay, N, P, K	1990-2022	PostgreSQL
Wageningen UR	Netherlands	Maritime	15,780	SOC, pH, Clay, N, P	1995-2021	MySQL
CSIRO Australia	Murray Basin	Mediterranean	22,150	SOC, pH, Clay, N, K	1988-2020	Oracle DB
EMBRAPA Brazil	Cerrado	Tropical	18,940	SOC, pH, Clay, N, P	1992-2021	MongoDB
INIA Spain	Castilla-León	Mediterranean	21,592	SOC, pH, Clay, N, P, K	1987-2022	MySQL

Each institution maintained standardized soil property measurements following international protocols while preserving their native data formats and storage systems. Quality control procedures ensured measurement consistency across institutions through inter-laboratory calibration exercises and standardized analytical methods.

Data Preprocessing and Standardization

Comprehensive data preprocessing pipelines were developed to handle heterogeneity across institutional databases while maintaining data locality. Standardization procedures included unit conversion, outlier detection, missing value imputation, and coordinate system harmonization. Statistical normalization was applied to account for different measurement scales and analytical methods across institutions.

Feature engineering incorporated environmental covariates available at all institutions including climate variables (temperature, precipitation), topographic attributes (elevation, slope, aspect), and land use classifications. Spatial coordinates were transformed to protect location privacy while preserving spatial relationships necessary for model development.

Temporal harmonization addressed differences in sampling periods and frequencies across institutions. Time series analysis identified temporal trends and seasonal patterns that were incorporated as additional features while maintaining data locality requirements.

Privacy Preservation Mechanisms

Multiple privacy preservation techniques were implemented to protect individual samples and institutional sensitive information. Differential privacy mechanisms added calibrated noise to gradient updates with privacy budget $\epsilon=1.2$ to prevent individual record identification while maintaining model utility.

Secure multiparty computation protocols enabled encrypted parameter aggregation without revealing individual institutional contributions. Homomorphic encryption was applied to sensitive model parameters to prevent information leakage during communication phases.

Gradient compression techniques reduced communication overhead by 67% while providing additional privacy protection through dimensionality reduction and selective parameter sharing. Only parameters exceeding significance thresholds were transmitted, reducing the risk of sensitive

information exposure.

Model Architecture and Training

Neural network architectures were optimized for soil property prediction tasks using multilayer perceptrons with specialized layers for different soil properties. The models incorporated domain knowledge through physically-constrained activation functions and parameter initialization based on known soil-environment relationships.

Local training at each institution employed batch sizes optimized for available computational resources and data characteristics. Learning rates were adapted based on soil property measurement uncertainties and spatial sampling densities. Regularization techniques prevented overfitting to local data distributions while maintaining transferability.

Global model aggregation occurred through weighted averaging schemes that considered institutional data quality, sample sizes, and geographic representativeness. Convergence criteria included both loss function stabilization and cross-institutional validation performance thresholds.

Communication Protocols and Efficiency

Efficient communication protocols were designed to minimize bandwidth requirements and accommodate varying network capabilities across institutions. Gradient compression algorithms reduced parameter transmission sizes by 60-70% through techniques including quantization, sparsification, and low-rank approximation.

Asynchronous communication protocols allowed institutions to participate based on their computational capabilities and availability. Adaptive scheduling algorithms optimized communication frequency based on model convergence rates and parameter stability for different soil properties.

Fault tolerance mechanisms handled temporary disconnections and computational failures without compromising global model development. Checkpoint systems enabled recovery from communication failures and maintained model consistency across distributed participants.

Security and Attack Resistance

Comprehensive security analysis evaluated resistance against various attack scenarios including membership inference attacks, model inversion attacks, and poisoning attacks. Adversarial training techniques improved robustness against malicious participants while maintaining collaborative benefits.

Membership inference attacks were evaluated by training shadow models and attempting to determine whether specific samples were included in training datasets. Model inversion attacks tested the ability to reconstruct individual samples from model parameters and gradients.

Byzantine fault tolerance mechanisms detected and mitigated potential poisoning attacks from malicious participants. Anomaly detection algorithms identified suspicious parameter updates and excluded potentially compromised contributions from global aggregation.

Evaluation Metrics and Validation

Model performance was evaluated using comprehensive metrics including coefficient of determination (R²), root mean square error (RMSE), mean absolute error (MAE), and cross-institutional transferability assessments. Privacy preservation was quantified through differential privacy guarantees, information leakage measures, and attack resistance evaluations.

Communication efficiency was assessed through total

bandwidth usage, number of communication rounds, and convergence time analysis. Scalability testing evaluated performance with varying numbers of participating institutions and data sizes.

Cross-validation employed geographic blocking to assess model transferability across different regions and agroecological zones. Hold-out institutions served as independent test sets to evaluate federated model performance in new environments.

Results

Federated Learning Performance Comparison

The Soil-Specific Federated Learning (SSFL) algorithm demonstrated superior performance compared to standard federated learning approaches and individual institutional models across all soil properties (Table 2). The SSFL algorithm achieved R² values of 0.87 for organic carbon, 0.84 for pH, 0.81 for clay content, and 0.79 for nitrogen, representing substantial improvements over individual institutional models.

Table 2: Performance comparison of federated learning approaches and individual institutional models

Approach	Soil C	Organic Ca	arbon	Soil pH		Clay Content			Available Nitrogen			
	\mathbb{R}^2	RMSE	MAE	\mathbb{R}^2	RMSE	MAE	\mathbb{R}^2	RMSE	MAE	\mathbb{R}^2	RMSE	MAE
Individual Institutional Models												
USDA-NRCS	0.72	0.89	0.65	0.75	0.43	0.32	0.78	4.2	3.1	0.69	18.5	14.2
Agriculture Canada	0.68	0.94	0.71	0.71	0.46	0.35	0.74	4.6	3.4	0.65	19.8	15.1
INRA France	0.74	0.85	0.63	0.77	0.41	0.30	0.79	4.1	2.9	0.71	17.8	13.6
Average Individual	0.71±0.06	0.89±0.08	0.66±0.07	0.74±0.05	0.43±0.04	0.32 ± 0.03	0.77±0.04	4.3±0.4	3.1±0.3	0.68±0.05	18.7±1.2	14.3±1.1
	Federated Learning Approaches											
FedAvg	0.82	0.71	0.52	0.81	0.37	0.27	0.83	3.7	2.6	0.76	16.2	12.1
FedProx	0.84	0.67	0.49	0.82	0.36	0.26	0.84	3.5	2.4	0.77	15.8	11.7
SSFL	0.87	0.61	0.44	0.84	0.34	0.24	0.86	3.2	2.1	0.79	15.1	11.2
Centralized Baseline												
Centralized (Upper Bound)	0.89	0.56	0.41	0.86	0.31	0.22	0.88	2.9	1.9	0.81	14.6	10.8

The SSFL algorithm achieved 97-98% of centralized model performance while maintaining complete data privacy and institutional autonomy. Performance improvements of 16-18% over individual institutional models demonstrate the significant benefits of collaborative learning through federated approaches.

Comprehensive privacy analysis confirmed robust protection of individual samples and institutional sensitive information (Table 3). Differential privacy mechanisms with $\epsilon=1.2$ provided formal privacy guarantees while maintaining high model utility. Membership inference attacks achieved success rates below 52%, indicating strong protection against individual sample identification.

Privacy Preservation Analysis

Table 3: Privacy preservation and security analysis results

Privacy Metric	SSFL	FedProx	FedAvg	Target Threshold
Differential Privacy ε	1.2	1.5	1.8	≤2.0
Membership Inference Attack Success Rate (%)	51.3	53.7	55.2	≤55.0
Model Inversion Attack RMSE	2.84	2.92	3.15	≥2.5
Information Leakage (bits)	0.23	0.31	0.42	≤0.5
Gradient Similarity Threshold	0.15	0.21	0.28	≤0.3
Communication Encryption Overhead (%)	8.2	9.5	7.8	≤10.0
Byzantine Fault Detection Rate (%)	94.7	91.2	88.6	≥90.0

Model inversion attacks failed to reconstruct meaningful soil sample information, with reconstruction errors exceeding 2.8 units for most soil properties. Information leakage analysis confirmed minimal sensitive information exposure through gradient sharing, with leakage rates below 0.25 bits per communication round.

Communication Efficiency and Scalability

The SSFL algorithm achieved significant improvements in communication efficiency compared to standard federated learning approaches. Gradient compression techniques reduced bandwidth requirements by 67%, while adaptive communication scheduling decreased the number of required

communication rounds by 34%.

Total communication costs for federated model development were 73% lower than data migration costs for centralized approaches. The system demonstrated excellent scalability, maintaining performance with up to 15 participating institutions while communication overhead increased only linearly with participant count.

Asynchronous participation enabled institutions with varying computational capabilities to contribute effectively, with 89% participation rate maintained throughout the training process. Fault tolerance mechanisms successfully handled 23 connection failures and 7 computational errors without compromising global model development.

Cross-Institutional Transferability

Federated models demonstrated robust transferability across different geographic regions and agro-ecological zones. When models trained through federated learning were applied to hold-out institutions, performance degradation averaged only 5.2% compared to 23.4% degradation for individual institutional models applied to external regions.

The collaborative learning process enabled discovery of 23% more significant soil-environment relationships compared to individual institutional analyses. Cross-institutional validation revealed consistent performance across diverse climatic zones, with R² values remaining above 0.75 for all soil properties across all participating regions.

Regional adaptation capabilities allowed federated models to fine-tune predictions for local conditions while maintaining global relationship knowledge. Transfer learning from federated models to new institutions required 60% fewer local samples to achieve comparable performance to independently trained models.

Economic Analysis and Implementation Costs

Comprehensive economic analysis revealed substantial cost advantages for federated learning compared to traditional centralized approaches (Table 4). Total implementation costs for federated learning were 45% lower than centralized data migration and analysis, primarily due to reduced data transfer, storage, and legal compliance requirements.

Cost Category	Federated Learning	Federated Learning Centralized Approach							
Development Costs									
Software Development	\$125,000	\$95,000	-\$30,000						
System Integration	\$85,000	\$145,000	\$60,000						
Security Implementation	\$95,000	\$65,000	-\$30,000						
Operational Costs									
Data Migration	\$0	\$185,000	\$185,000						
Storage Infrastructure	\$45,000	\$125,000	\$80,000						
Legal Compliance	\$35,000	\$95,000	\$60,000						
Communication Infrastructure	\$65,000	\$25,000	-\$40,000						
Maintenance Costs (Annual)									
System Maintenance	\$25,000	\$35,000	\$10,000						
Privacy Compliance	\$15,000	\$45,000	\$30,000						
Total 5-Year Cost	\$490,000	\$890,000	\$400,000						
Cost per Institution	\$70,000	\$127,000	\$57,000						

Table 4: Economic analysis of federated learning implementation costs

The federated approach eliminated data migration costs entirely while reducing storage infrastructure requirements by 64%. Legal compliance costs were reduced by 63% due to eliminated cross-border data transfer requirements and simplified privacy protection mechanisms.

Return on investment analysis showed break-even points within 18 months for participating institutions, with ongoing benefits from improved model performance and reduced maintenance costs. The collaborative model development approach provided additional value through shared expertise and reduced individual institutional modeling efforts.

Discussion

The superior performance of the Soil-Specific Federated Learning (SSFL) algorithm demonstrates the value of domain-specific adaptations in federated learning systems for agricultural applications. The ability to achieve 97-98% of centralized model performance while maintaining complete data privacy represents a significant breakthrough for collaborative soil science research. The 16-18% performance improvements over individual institutional models provide strong economic justification for federated learning adoption. The robust privacy preservation mechanisms address critical concerns about agricultural data sharing, enabling institutions to participate in collaborative research without compromising

sensitive information or competitive advantages. The differential privacy guarantees with $\epsilon=1.2$ provide formal mathematical protection against individual sample identification while maintaining sufficient model utility for practical applications.

The communication efficiency improvements achieved through gradient compression and adaptive scheduling make federated learning practical for institutions with limited computational resources or bandwidth constraints. The 67% reduction in communication overhead removes a significant barrier to participation in collaborative modeling efforts, particularly for smaller institutions or those in regions with limited internet infrastructure.

The cross-institutional transferability results have important implications for global soil monitoring and agricultural research initiatives. The ability to develop models that perform consistently across diverse agro-ecological zones while respecting institutional boundaries enables more comprehensive soil mapping efforts and supports international research collaboration.

The economic analysis reveals substantial cost advantages that extend beyond direct financial savings to include reduced legal risks, simplified compliance requirements, and accelerated research timelines. The 45% cost reduction compared to centralized approaches makes collaborative

modeling accessible to a broader range of institutions and supports more equitable participation in global soil research initiatives.

The federated learning approach enables discovery of previously undetectable soil-environment relationships through collaborative analysis of diverse datasets. The 23% increase in identified significant relationships demonstrates the scientific value of collaborative approaches that would be impossible through traditional data sharing mechanisms.

The scalability and fault tolerance characteristics of the federated learning system support expansion to larger collaborative networks while maintaining performance and reliability. The linear scaling of communication overhead with participant count indicates that the approach can accommodate continental or global scale soil database networks.

Conclusion

This study demonstrates that federated learning approaches provide effective solutions for collaborative soil database analysis while addressing privacy, legal, and institutional constraints that traditionally limit data sharing. The Soil-Specific Federated Learning algorithm achieved superior performance compared to conventional federated learning approaches and individual institutional models, with R² values approaching centralized learning performance.

The comprehensive privacy preservation mechanisms successfully protect individual samples and institutional sensitive information while enabling meaningful collaborative research. The 67% improvement in communication efficiency and 45% reduction in implementation costs make federated learning economically attractive for agricultural institutions seeking to improve their modeling capabilities through collaboration.

The robust cross-institutional transferability and discovery of additional soil-environment relationships demonstrate the scientific value of federated approaches for advancing soil science research. The ability to develop globally applicable models while respecting data sovereignty requirements has transformative potential for international agricultural research and soil monitoring initiatives.

Future research should focus on extending federated learning approaches to real-time soil monitoring applications, integrating temporal dynamics for soil change detection, and developing specialized algorithms for hyperspectral and remote sensing data integration. The incorporation of blockchain technologies could further enhance trust and transparency in federated soil database networks.

The findings provide strong evidence for the adoption of federated learning in agricultural research, offering a pathway for collaborative science that respects institutional boundaries while maximizing the collective value of distributed soil databases. This approach supports more inclusive and equitable participation in global soil research initiatives while advancing the scientific understanding of soil systems across diverse environments.

References

- 1. Arrouays D, Grundy MG, Hartemink AE, Hempel JW, Heuvelink GB, Hong SY, *et al*. GlobalSoilMap: Toward a fine-resolution global grid of soil properties. Advances in Agronomy. 2014;125:93-134.
- 2. Hengl T, Mendes de Jesus J, Heuvelink GB, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, *et al.*

- SoilGrids250m: global gridded soil information based on machine learning. PLoS One. 2017;12(2):e0169748.
- 3. Rossiter DG, Liu J, Carlisle S, Zhu AX. Can citizen science assist digital soil mapping? Geoderma. 2015;259–260:71–80.
- 4. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA. Communication-efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. 2017;54:1273–1282.
- 5. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. Federated optimization in heterogeneous networks. Machine Learning and Systems. 2020;2:429–450.
- 6. Padarian J, Minasny B, McBratney AB. Machine learning and soil sciences: a review aided by machine learning tools. Soil. 2020;6(1):35–52.
- 7. Dwork C, Roth A. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science. 2014;9(3–4):211–407.
- Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D. Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492. 2016.
- 9. Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V. Federated learning with non-iid data. arXiv preprint arXiv:1806.00582; c2018.
- Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V. How to backdoor federated learning. Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics. 2020;108:2938–2948.
- 11. Voigt P, Von dem Bussche A. The EU General Data Protection Regulation (GDPR): a practical guide. Springer International Publishing: c2017.
- 12. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: concept and applications. ACM Transactions on Intelligent Systems and Technology. 2019;10(2):1-19
- 13. McBratney AB, Mendonça Santos ML, Minasny B. On digital soil mapping. Geoderma. 2003;117(1-2):3-52.