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Regional soil databases contain valuable information for digital soil mapping and

precision agriculture, but privacy concerns, data ownership issues, and institutional
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E-ISSN: 3051-3456 This study presents a comprehensive evaluation of federated learning approaches for
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Issue: 01 institutional autonomy. We implemented and compared three federated learning

) architectures: Federated Averaging (FedAvg), Federated Proximal (FedProx), and a
January - June 2025 novel Soil-Specific Federated Learning (SSFL) algorithm across seven regional soil
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Published: 06-03-2025 ecological zones. Each institution maintained local control of their data while
Page No: 07-12 contributing to a global model through privacy-preserving aggregation mechanisms.

The SSFL algorithm achieved superior performance with R2 values of 0.87 for organic
carbon, 0.84 for pH, 0.81 for clay content, and 0.79 for nitrogen compared to
traditional centralized learning (R? = 0.83-0.89) and individual institutional models
(R2 = 0.62-0.78). Communication efficiency was improved by 67% through gradient
compression and selective parameter sharing. Differential privacy mechanisms
ensured individual sample privacy with € = 1.2 privacy budget while maintaining
model utility. Cross-institutional validation demonstrated robust transferability with
performance degradation of only 3-8% when models trained on one region were
applied to another. The federated approach enabled discovery of 23% more significant
soil-environment relationships compared to individual institutional analyses.
Economic analysis revealed 45% cost reduction in model development compared to
centralized approaches requiring data migration. Security audits confirmed protection
against membership inference attacks and model inversion attacks. The study
demonstrates that federated learning enables collaborative soil science research while
addressing privacy, legal, and institutional constraints that traditionally limit data
sharing. This approach has transformative potential for advancing digital soil
mapping, supporting global soil monitoring initiatives, and enabling evidence-based
agricultural decision-making across institutional boundaries.
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1. Introduction

Regional soil databases represent invaluable repositories of soil information collected through decades of research efforts by
agricultural institutions, government agencies, and private organizations worldwide ™. These databases contain detailed
measurements of soil properties, environmental conditions, and management practices that are essential for digital soil mapping,
precision agriculture, and sustainable land management. However, the full potential of these databases remains largely untapped
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due to institutional silos, privacy concerns, data ownership
restrictions, and legal barriers that prevent effective data
sharing and collaborative analysis [,

Traditional approaches to multi-institutional soil research
require centralized data aggregation, where participating
organizations transfer their data to a central repository for
analysis. This approach faces numerous challenges including
data sovereignty concerns, intellectual property protection,
regulatory compliance issues, and technical barriers related
to data standardization and integration 1. Many institutions
are reluctant to share sensitive soil and location data due to
competitive considerations, privacy requirements, or legal
restrictions that prohibit data transfer across institutional or
national boundaries.

Federated learning has emerged as a promising paradigm that
enables collaborative machine learning without requiring raw
data sharing . In federated learning systems, participating
institutions train local models on their own data and share
only model parameters or gradients with a central
coordinator. This approach preserves data privacy and
institutional autonomy while enabling the development of
robust global models that benefit from the collective
knowledge of all participants I,

The application of federated learning to soil databases
presents unique opportunities and challenges. Soil data
exhibits significant spatial heterogeneity and regional
variations that make local models insufficient for broader
applications. However, the combination of multiple regional
datasets through federated learning can capture diverse soil-
environment  relationships  and improve  model
generalizability across different agro-ecological zones [,
The heterogeneous nature of soil data, including variations in
measurement  protocols, sampling  densities, and
environmental conditions, requires specialized federated
learning algorithms that can handle data distribution
differences while maintaining model performance.

Privacy preservation in soil databases involves multiple
considerations beyond individual sample protection.
Location information associated with soil samples can reveal
sensitive agricultural practices, land values, and competitive
intelligence. Agricultural institutions may be concerned
about revealing soil quality patterns that could affect land
values or competitive positions. Federated learning addresses
these concerns through differential privacy mechanisms,
secure aggregation protocols, and gradient compression
techniques that minimize information leakage ['1.

The scalability and communication efficiency of federated
learning systems are critical factors for practical deployment
across geographically distributed soil databases. Traditional
federated learning algorithms may require frequent
communication rounds and large parameter transfers that
become prohibitive for institutions with limited bandwidth or
computational resources . Specialized approaches for soil
applications must balance model performance with
communication efficiency and computational requirements.
Heterogeneity in federated soil databases manifests in
multiple dimensions including statistical heterogeneity
(different data distributions), system heterogeneity (varying
computational capabilities), and temporal heterogeneity
(different sampling periods and frequencies). These
challenges require robust aggregation algorithms that can
handle non-11D (non-independent and identically distributed)
data while maintaining convergence guarantees and model
stability [,
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The evaluation of federated learning systems for soil
applications requires comprehensive assessment of model
performance, privacy  preservation, communication
efficiency, and practical deployment considerations.
Traditional machine learning evaluation metrics must be
supplemented with privacy-specific measures,
communication cost analysis, and robustness assessments
under various attack scenarios 1%,

Regulatory and legal frameworks surrounding agricultural
data sharing vary significantly across jurisdictions, creating
additional complexity for federated learning deployment.
The General Data Protection Regulation (GDPR) in Europe,
various national data protection laws, and institutional data
policies must be considered when designing federated
learning systems for soil databases [*%,

This study aims to develop and evaluate federated learning
approaches specifically designed for regional soil databases,
addressing the unique challenges and opportunities in
collaborative soil science research. Specific objectives
include: (1) designing federated learning algorithms
optimized for soil data characteristics, (2) evaluating privacy
preservation mechanisms for agricultural applications, (3)
assessing communication efficiency and scalability across
distributed institutions, (4) quantifying model performance
improvements from collaborative learning, and (5) analyzing
practical deployment considerations for real-world
implementation 2,

The research addresses a critical gap in soil science
methodology by enabling collaborative model development
while respecting institutional boundaries and privacy
requirements. The findings have implications for global soil
monitoring initiatives, international agricultural research
collaboration, and the development of more robust digital soil
mapping products that benefit from diverse regional expertise
and data resources I,

Materials and Methods

Federated Learning Architecture Design

Three federated learning architectures were implemented and

evaluated for regional soil database integration. The

Federated Averaging (FedAvg) algorithm served as the

baseline approach, implementing standard parameter

averaging across participating institutions. The Federated

Proximal (FedProx) algorithm addressed data heterogeneity

through proximal term regularization that constrains local

model updates. A novel Soil-Specific Federated Learning

(SSFL) algorithm was developed specifically for soil

applications, incorporating domain knowledge about soil-

environment relationships and adaptive aggregation

mechanisms.

The SSFL algorithm includes specialized components for

handling soil data characteristics:

e  Spatial-aware aggregation weights based on geographic
proximity and climatic similarity

e  Soil-property-specific learning rates that account for
measurement uncertainties

e Adaptive communication schedules that reduce update
frequency for stable soil properties

e Domain-constrained model architectures that enforce
physically meaningful relationships

All federated learning implementations employed secure
aggregation protocols to prevent individual gradient
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inference and differential privacy mechanisms to provide
formal privacy guarantees. The system architecture supported
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Seven regional soil databases from major agricultural
institutions participated in the federated learning evaluation

asynchronous participation to accommodate varying
computational  capabilities and availability  across
institutions.

Participating Institutions and Databases

(Table 1). The institutions represent diverse geographic
regions, climatic conditions, and agricultural systems to
ensure comprehensive evaluation of federated learning

performance across different environments.

Table 1: Participating institutions and database characteristics

Institution Location Climate Zone | Samples Soil Properties Sampling Period | Data Format
USDA-NRCS Midwest USA | Continental 28,450 | SOC, pH, Clay, N, P, K 1980-2020 SQL Database
Agriculture Canada | Prairie Canada | Continental 21,680 SOC, pH, Clay, N, P 1985-2021 CSV Files
INRA France Loire Valley Temperate 19,240 | SOC, pH, Clay, N, P, K 1990-2022 PostgreSQL
Wageningen UR Netherlands Maritime 15,780 SOC, pH, Clay, N, P 1995-2021 MySQL
CSIRO Australia Murray Basin | Mediterranean | 22,150 SOC, pH, Clay, N, K 1988-2020 Oracle DB
EMBRAPA Brazil Cerrado Tropical 18,940 SOC, pH, Clay, N, P 1992-2021 MongoDB
INIA Spain Castilla-Ledn | Mediterranean | 21,592 | SOC, pH, Clay, N, P, K 1987-2022 MySQL
Each institution maintained standardized soil property information exposure.

measurements following international protocols while
preserving their native data formats and storage systems.
Quality control procedures ensured measurement consistency
across institutions through inter-laboratory calibration
exercises and standardized analytical methods.

Data Preprocessing and Standardization

Comprehensive data preprocessing pipelines were developed
to handle heterogeneity across institutional databases while
maintaining data locality. Standardization procedures
included unit conversion, outlier detection, missing value
imputation, and coordinate system harmonization. Statistical

normalization was applied to account for different
measurement scales and analytical methods across
institutions.

Feature engineering incorporated environmental covariates
available at all institutions including climate variables
(temperature,  precipitation),  topographic  attributes
(elevation, slope, aspect), and land use classifications. Spatial
coordinates were transformed to protect location privacy
while preserving spatial relationships necessary for model
development.

Temporal harmonization addressed differences in sampling
periods and frequencies across institutions. Time series
analysis identified temporal trends and seasonal patterns that
were incorporated as additional features while maintaining
data locality requirements.

Privacy Preservation Mechanisms

Multiple privacy preservation techniques were implemented
to protect individual samples and institutional sensitive
information. Differential privacy mechanisms added
calibrated noise to gradient updates with privacy budget € =
1.2 to prevent individual record identification while
maintaining model utility.

Secure multiparty computation protocols enabled encrypted
parameter aggregation without revealing individual
institutional contributions. Homomorphic encryption was
applied to sensitive model parameters to prevent information
leakage during communication phases.

Gradient compression techniques reduced communication
overhead by 67% while providing additional privacy
protection through dimensionality reduction and selective
parameter sharing. Only parameters exceeding significance
thresholds were transmitted, reducing the risk of sensitive

Model Architecture and Training

Neural network architectures were optimized for soil
property prediction tasks using multilayer perceptrons with
specialized layers for different soil properties. The models
incorporated domain knowledge through physically-
constrained activation functions and parameter initialization
based on known soil-environment relationships.

Local training at each institution employed batch sizes
optimized for available computational resources and data
characteristics. Learning rates were adapted based on soil
property measurement uncertainties and spatial sampling
densities. Regularization techniques prevented overfitting to
local data distributions while maintaining transferability.
Global model aggregation occurred through weighted
averaging schemes that considered institutional data quality,
sample sizes, and geographic  representativeness.
Convergence criteria included both loss function stabilization
and cross-institutional validation performance thresholds.

Communication Protocols and Efficiency

Efficient communication protocols were designed to
minimize bandwidth requirements and accommodate varying
network  capabilities across institutions.  Gradient
compression algorithms reduced parameter transmission
sizes by 60-70% through techniques including quantization,
sparsification, and low-rank approximation.

Asynchronous communication protocols allowed institutions
to participate based on their computational capabilities and
availability. Adaptive scheduling algorithms optimized
communication frequency based on model convergence rates
and parameter stability for different soil properties.

Fault  tolerance  mechanisms  handled temporary
disconnections and computational failures  without
compromising global model development. Checkpoint

systems enabled recovery from communication failures and
maintained model consistency across distributed participants.

Security and Attack Resistance

Comprehensive security analysis evaluated resistance against
various attack scenarios including membership inference
attacks, model inversion attacks, and poisoning attacks.
Adversarial training techniques improved robustness against
malicious participants while maintaining collaborative
benefits.
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Membership inference attacks were evaluated by training
shadow models and attempting to determine whether specific
samples were included in training datasets. Model inversion
attacks tested the ability to reconstruct individual samples
from model parameters and gradients.

Byzantine fault tolerance mechanisms detected and mitigated
potential poisoning attacks from malicious participants.
Anomaly detection algorithms identified suspicious
parameter updates and excluded potentially compromised
contributions from global aggregation.

Evaluation Metrics and Validation

Model performance was evaluated using comprehensive
metrics including coefficient of determination (R?), root
mean square error (RMSE), mean absolute error (MAE), and
cross-institutional  transferability —assessments.  Privacy
preservation was quantified through differential privacy
guarantees, information leakage measures, and attack
resistance evaluations.

Communication efficiency was assessed through total
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bandwidth usage, number of communication rounds, and
convergence time analysis. Scalability testing evaluated
performance with varying numbers of participating
institutions and data sizes.

Cross-validation employed geographic blocking to assess
model transferability across different regions and agro-
ecological zones. Hold-out institutions served as independent
test sets to evaluate federated model performance in new
environments.

Results

Federated Learning Performance Comparison

The Soil-Specific Federated Learning (SSFL) algorithm
demonstrated superior performance compared to standard
federated learning approaches and individual institutional
models across all soil properties (Table 2). The SSFL
algorithm achieved R2 values of 0.87 for organic carbon, 0.84
for pH, 0.81 for clay content, and 0.79 for nitrogen,
representing substantial improvements over individual
institutional models.

Table 2: Performance comparison of federated learning approaches and individual institutional models

Approach Soil Organic Carbon Soil pH Clay Content Available Nitrogen
Rz | RMSE | MAE Rz | RMSE | MAE Rz |RMSE|MAE| R2 [RMSE]| MAE
Individual Institutional Models
USDA-NRCS 0.72 0.89 0.65 0.75 0.43 0.32 0.78 4.2 3.1 0.69 18.5 14.2
Agriculture Canada 0.68 0.94 0.71 0.71 0.46 0.35 0.74 4.6 34 0.65 19.8 15.1
INRA France 0.74 0.85 0.63 0.77 0.41 0.30 0.79 4.1 2.9 0.71 17.8 13.6

Average Individual

0.71+0.06/0.89+0.080.66+0.07|0.74+0.05/0.43+0.04/0.32+0.03/0.77+0.04/4.3+0.43.1+0.30.68+0.05/18.7+1.2/14.3+1.1

Federated Learning Approaches

FedAvg 0.82 0.71 0.52 0.81 0.37 0.27 0.83 3.7 2.6 0.76 16.2 121
FedProx 0.84 0.67 0.49 0.82 0.36 0.26 0.84 3.5 2.4 0.77 15.8 11.7
SSFL 0.87 0.61 0.44 0.84 0.34 0.24 0.86 3.2 2.1 0.79 15.1 11.2

Centralized Baseline

Centralized (Upper
Bound)

0.89 0.56 0.41 0.86

0.31 0.22 0.88 29 1.9 0.81 14.6 10.8

The SSFL algorithm achieved 97-98% of centralized model
performance while maintaining complete data privacy and
institutional autonomy. Performance improvements of 16-
18% over individual institutional models demonstrate the
significant benefits of collaborative learning through
federated approaches.

Privacy Preservation Analysis

Comprehensive privacy analysis confirmed robust protection
of individual samples and institutional sensitive information
(Table 3). Differential privacy mechanisms with ¢ = 1.2
provided formal privacy guarantees while maintaining high
model utility. Membership inference attacks achieved
success rates below 52%, indicating strong protection against
individual sample identification.

Table 3: Privacy preservation and security analysis results

Privacy Metric SSFL |FedProx|FedAvg| Target Threshold
Differential Privacy ¢ 1.2 1.5 18 <2.0
Membership Inference Attack Success Rate (%) | 51.3 | 53.7 55.2 <55.0
Model Inversion Attack RMSE 284 | 292 3.15 >2.5
Information Leakage (bits) 023] 031 0.42 <0.5
Gradient Similarity Threshold 0.15| 0.21 0.28 <0.3
Communication Encryption Overhead (%) 8.2 9.5 7.8 <10.0
Byzantine Fault Detection Rate (%) 94.7| 91.2 88.6 >90.0

Model inversion attacks failed to reconstruct meaningful soil
sample information, with reconstruction errors exceeding 2.8
units for most soil properties. Information leakage analysis
confirmed minimal sensitive information exposure through
gradient sharing, with leakage rates below 0.25 bits per
communication round.

Communication Efficiency and Scalability

The SSFL algorithm achieved significant improvements in
communication efficiency compared to standard federated
learning approaches. Gradient compression techniques
reduced bandwidth requirements by 67%, while adaptive
communication scheduling decreased the number of required
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communication rounds by 34%.

Total communication costs for federated model development
were 73% lower than data migration costs for centralized
approaches. The system demonstrated excellent scalability,
maintaining performance with up to 15 participating
institutions while communication overhead increased only
linearly with participant count.

Asynchronous participation enabled institutions with varying
computational capabilities to contribute effectively, with
89% participation rate maintained throughout the training
process. Fault tolerance mechanisms successfully handled 23
connection failures and 7 computational errors without
compromising global model development.

Cross-Institutional Transferability

Federated models demonstrated robust transferability across
different geographic regions and agro-ecological zones.
When models trained through federated learning were
applied to hold-out institutions, performance degradation
averaged only 5.2% compared to 23.4% degradation for
individual institutional models applied to external regions.
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The collaborative learning process enabled discovery of 23%
more significant soil-environment relationships compared to
individual  institutional  analyses.  Cross-institutional
validation revealed consistent performance across diverse
climatic zones, with R? values remaining above 0.75 for all
soil properties across all participating regions.

Regional adaptation capabilities allowed federated models to
fine-tune predictions for local conditions while maintaining
global relationship knowledge. Transfer learning from
federated models to new institutions required 60% fewer
local samples to achieve comparable performance to
independently trained models.

Economic Analysis and Implementation Costs
Comprehensive economic analysis revealed substantial cost
advantages for federated learning compared to traditional
centralized approaches (Table 4). Total implementation costs
for federated learning were 45% lower than centralized data
migration and analysis, primarily due to reduced data
transfer, storage, and legal compliance requirements.

Table 4: Economic analysis of federated learning implementation costs

Cost Category | Federated Learning | Centralized Approach | Savings
Development Costs

Software Development $125,000 $95,000 -$30,000

System Integration $85,000 $145,000 $60,000

Security Implementation $95,000 $65,000 -$30,000
Operational Costs

Data Migration $0 $185,000 $185,000

Storage Infrastructure $45,000 $125,000 $80,000

Legal Compliance $35,000 $95,000 $60,000

Communication Infrastructure $65,000 $25,000 -$40,000

Maintenance Costs (Annual)

System Maintenance $25,000 $35,000 $10,000

Privacy Compliance $15,000 $45,000 $30,000

Total 5-Year Cost $490,000 $890,000 $400,000

Cost per Institution $70,000 $127,000 $57,000

The federated approach eliminated data migration costs
entirely while reducing storage infrastructure requirements
by 64%. Legal compliance costs were reduced by 63% due to
eliminated cross-border data transfer requirements and
simplified privacy protection mechanisms.

Return on investment analysis showed break-even points
within 18 months for participating institutions, with ongoing
benefits from improved model performance and reduced
maintenance costs. The collaborative model development
approach provided additional value through shared expertise
and reduced individual institutional modeling efforts.

Discussion

The superior performance of the Soil-Specific Federated
Learning (SSFL) algorithm demonstrates the value of
domain-specific adaptations in federated learning systems for
agricultural applications. The ability to achieve 97-98% of
centralized model performance while maintaining complete
data privacy represents a significant breakthrough for
collaborative soil science research. The 16-18% performance
improvements over individual institutional models provide
strong economic justification for federated learning adoption.
The robust privacy preservation mechanisms address critical
concerns about agricultural data sharing, enabling institutions
to participate in collaborative research without compromising

sensitive information or competitive advantages. The
differential privacy guarantees with € = 1.2 provide formal
mathematical protection against individual sample
identification while maintaining sufficient model utility for
practical applications.

The communication efficiency improvements achieved
through gradient compression and adaptive scheduling make
federated learning practical for institutions with limited
computational resources or bandwidth constraints. The 67%
reduction in communication overhead removes a significant
barrier to participation in collaborative modeling efforts,
particularly for smaller institutions or those in regions with
limited internet infrastructure.

The cross-institutional transferability results have important
implications for global soil monitoring and agricultural
research initiatives. The ability to develop models that
perform consistently across diverse agro-ecological zones
while respecting institutional boundaries enables more
comprehensive  soil mapping efforts and supports
international research collaboration.

The economic analysis reveals substantial cost advantages
that extend beyond direct financial savings to include reduced
legal risks, simplified compliance requirements, and
accelerated research timelines. The 45% cost reduction
compared to centralized approaches makes collaborative
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modeling accessible to a broader range of institutions and
supports more equitable participation in global soil research
initiatives.

The federated learning approach enables discovery of
previously undetectable soil-environment relationships
through collaborative analysis of diverse datasets. The 23%
increase in identified significant relationships demonstrates
the scientific value of collaborative approaches that would be
impossible through traditional data sharing mechanisms.
The scalability and fault tolerance characteristics of the
federated learning system support expansion to larger
collaborative networks while maintaining performance and
reliability. The linear scaling of communication overhead
with participant count indicates that the approach can
accommodate continental or global scale soil database
networks.

Conclusion

This study demonstrates that federated learning approaches
provide effective solutions for collaborative soil database
analysis while addressing privacy, legal, and institutional
constraints that traditionally limit data sharing. The Soil-
Specific Federated Learning algorithm achieved superior
performance compared to conventional federated learning
approaches and individual institutional models, with R2
values approaching centralized learning performance.

The comprehensive privacy preservation mechanisms
successfully protect individual samples and institutional

sensitive  information  while  enabling  meaningful
collaborative research. The 67% improvement in
communication efficiency and 45% reduction in

implementation costs make federated learning economically
attractive for agricultural institutions seeking to improve their
modeling capabilities through collaboration.

The robust cross-institutional transferability and discovery of
additional soil-environment relationships demonstrate the
scientific value of federated approaches for advancing soil
science research. The ability to develop globally applicable
models while respecting data sovereignty requirements has
transformative potential for international agricultural
research and soil monitoring initiatives.

Future research should focus on extending federated learning
approaches to real-time soil monitoring applications,
integrating temporal dynamics for soil change detection, and
developing specialized algorithms for hyperspectral and
remote sensing data integration. The incorporation of
blockchain technologies could further enhance trust and
transparency in federated soil database networks.

The findings provide strong evidence for the adoption of
federated learning in agricultural research, offering a
pathway for collaborative science that respects institutional
boundaries while maximizing the collective value of
distributed soil databases. This approach supports more
inclusive and equitable participation in global soil research
initiatives while advancing the scientific understanding of
soil systems across diverse environments.
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