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Abstract 
Digital soil mapping using artificial intelligence has demonstrated remarkable 
accuracy in predicting soil properties, but uncertainty quantification remains a critical 
challenge for practical implementation and decision-making in precision agriculture. 
This study presents a comprehensive evaluation of uncertainty quantification methods 
for AI-predicted soil maps, comparing Bayesian deep learning, ensemble approaches, 
and Monte Carlo dropout techniques across diverse agricultural landscapes. We 
developed and evaluated five uncertainty quantification frameworks: Monte Carlo 
Dropout (MCD), Deep Ensembles (DE), Bayesian Neural Networks (BNN), 
Variational Inference (VI), and a novel Spatial Uncertainty Network (SUN) using 
23,847 soil samples collected across six agro-ecological zones in North America and 
Europe. The models predicted soil organic carbon (SOC), pH, clay content, and 
available nitrogen with associated uncertainty estimates at 30-meter spatial resolution. 
Ground truth validation was conducted using independent test datasets comprising 
4,769 samples reserved from model training. The Spatial Uncertainty Network 
achieved superior performance with prediction interval coverage probability (PICP) 
of 94.2% for SOC, 92.8% for pH, 91.5% for clay content, and 89.7% for nitrogen at 
95% confidence levels. Mean interval width (MIW) was reduced by 23-31% compared 
to traditional approaches while maintaining calibration reliability. Bayesian Neural 
Networks demonstrated excellent calibration with reliability diagrams showing 
minimal deviation from perfect calibration lines. Ensemble methods provided robust 
uncertainty estimates with computational efficiency advantages over full Bayesian 
approaches. Spatial analysis revealed systematic patterns in prediction uncertainty 
related to sampling density, topographic complexity, and soil heterogeneity. Areas 
with sparse sampling showed 2.3× higher uncertainty than densely sampled regions. 
Complex terrain exhibited 45% greater uncertainty compared to homogeneous 
landscapes. Temporal validation over three years confirmed uncertainty estimate 
stability with less than 8% variation in calibration metrics. Economic analysis 
demonstrated that uncertainty-informed management decisions improved profitability 
by 12-18% compared to deterministic predictions through optimized fertilizer 
application and reduced over-treatment risks. The study establishes practical 
frameworks for implementing uncertainty quantification in operational soil mapping 
systems, enabling evidence-based decision-making and risk assessment in precision 
agriculture applications. 
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Introduction 

Digital soil mapping using artificial intelligence has revolutionized our ability to predict soil properties at high spatial resolution, 

enabling precision agriculture applications and supporting sustainable land management decisions [1]. However, the practical 
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implementation of AI-predicted soil maps faces a critical 

challenge: the quantification and communication of 

prediction uncertainty. Without reliable uncertainty 

estimates, decision-makers cannot assess the reliability of 

soil predictions or optimize management strategies based on 

prediction confidence levels [2]. 

Traditional machine learning approaches provide point 

predictions without uncertainty information, limiting their 

utility for risk-sensitive agricultural applications. Farmers 

and agronomists need to know not only what the predicted 

soil property value is, but also how confident they can be in 

that prediction to make informed decisions about fertilizer 

application, crop selection, and soil management practices [3]. 

The absence of uncertainty information can lead to sub-

optimal decisions, over-treatment with inputs, or missed 

opportunities for targeted interventions. 

Uncertainty in soil property predictions arises from multiple 

sources including measurement errors in training data, model 

limitations in capturing complex soil-environment 

relationships, spatial interpolation between sampling points, 

and temporal variability in soil conditions [4]. Aleatory 

uncertainty reflects inherent randomness in soil systems and 

measurement processes, while epistemic uncertainty 

represents knowledge limitations that could potentially be 

reduced through additional data or improved models [5]. 

Bayesian deep learning has emerged as a promising approach 

for uncertainty quantification in machine learning 

applications, providing principled frameworks for estimating 

both aleatory and epistemic uncertainties [6]. Bayesian neural 

networks place probability distributions over model 

parameters, enabling uncertainty propagation through 

network predictions. However, exact Bayesian inference is 

computationally intractable for deep networks, requiring 

approximate inference techniques such as variational 

inference or Monte Carlo methods. 

Monte Carlo dropout represents a computationally efficient 

approximation to Bayesian inference that estimates 

uncertainty by treating dropout as a Bayesian approximation 
[7]. By applying dropout during inference and averaging 

predictions across multiple forward passes, the method 

provides uncertainty estimates without requiring specialized 

training procedures. However, the theoretical foundations 

and practical calibration of Monte Carlo dropout remain 

subjects of ongoing research. 

Ensemble methods offer alternative approaches to 

uncertainty quantification by training multiple models with 

different initializations, architectures, or training subsets [8]. 

Deep ensembles have shown excellent performance in 

uncertainty estimation tasks, providing well-calibrated 

predictions across various applications. The diversity among 

ensemble members captures different aspects of model 

uncertainty, while averaging reduces prediction variance and 

improves overall accuracy. 

Variational inference provides mathematically principled 

approximations to Bayesian posteriors through optimization 

of variational lower bounds [9]. Modern variational 

techniques can handle complex posterior distributions while 

maintaining computational tractability. However, the quality 

of variational approximations depends on the choice of 

variational family and optimization procedures. 

Spatial uncertainty quantification faces additional challenges 

unique to geographical applications. Spatial autocorrelation 

in soil properties means that prediction uncertainty is not 

independent across locations, requiring specialized 

approaches that account for spatial dependencies [10]. 

Traditional uncertainty measures may underestimate 

uncertainty in areas of high spatial variability or overestimate 

uncertainty in homogeneous regions. 

The evaluation of uncertainty quantification methods 

requires specialized metrics beyond traditional accuracy 

measures. Calibration assessment examines whether 

predicted uncertainty levels match observed prediction 

errors. Well-calibrated models should have 95% of true 

values falling within 95% prediction intervals. Sharpness 

measures the informativeness of uncertainty estimates, with 

narrower intervals being preferable when maintaining proper 

calibration [11]. 

Practical implementation of uncertainty quantification in 

operational soil mapping systems must balance accuracy, 

computational efficiency, and interpretability. Real-time 

applications may require efficient uncertainty estimation 

methods that can provide timely results for decision-making. 

The communication of uncertainty information to end-users 

presents additional challenges in visualization and 

interpretation [12]. 

This study aims to develop and evaluate comprehensive 

uncertainty quantification frameworks for AI-predicted soil 

maps, addressing both methodological challenges and 

practical implementation considerations. Specific objectives 

include: (1) comparing different uncertainty quantification 

approaches for soil property prediction, (2) evaluating 

calibration and reliability of uncertainty estimates, (3) 

analyzing spatial patterns in prediction uncertainty, (4) 

assessing computational efficiency and scalability, and (5) 

demonstrating practical applications for precision agriculture 

decision-making [13]. 

 

Materials and Methods 

Study Areas and Data Collection 

The research was conducted across six representative agro-

ecological zones to ensure comprehensive evaluation of 

uncertainty quantification methods under diverse 

environmental conditions. Study areas included: temperate 

continental croplands in Iowa, USA (42°00'N, 93°30'W), 

boreal agricultural regions in Alberta, Canada (53°30'N, 

113°30'W), Mediterranean agricultural areas in Andalusia, 

Spain (37°30'N, 4°30'W), subtropical farming systems in São 

Paulo, Brazil (22°30'S, 47°30'W), semi-arid rangelands in 

Queensland, Australia (27°30'S, 152°30'E), and temperate 

maritime regions in Normandy, France (49°00'N, 0°30'E). 

A total of 23,847 soil samples were collected using stratified 

random sampling design with minimum 250-meter spacing 

to ensure spatial independence. Sampling density varied from 

0.8 samples km⁻² in homogeneous areas to 2.1 samples km⁻² 

in heterogeneous terrain. Samples were collected from 0-20 

cm depth during optimal conditions to minimize temporal 

variability effects. 

Independent validation datasets comprising 4,769 samples 

(20% of total) were reserved from model training and used 

exclusively for uncertainty quantification evaluation. 

Temporal validation employed additional samples collected 

1-3 years after initial sampling to assess uncertainty estimate 

stability over time. 

 

Laboratory Analysis and Quality Control 

Soil samples were analyzed for four target properties using 

standardized protocols: soil organic carbon (SOC) through 

dry combustion method, pH in 1:2 soil-water suspension, 
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clay content via laser diffraction particle size analysis, and 

available nitrogen through alkaline permanganate extraction. 

All analyses included replicate measurements and quality 

control samples comprising 15% of total samples. 

Measurement uncertainty was quantified through inter-

laboratory comparison exercises and replicate analysis, 

providing estimates of analytical precision for uncertainty 

decomposition analysis. Standard deviations for laboratory 

measurements were: SOC (±0.08%), pH (±0.05 units), clay 

content (±1.2%), and available nitrogen (±2.1 mg kg⁻¹). 

 

Environmental Covariates and Feature Engineering 

Comprehensive environmental datasets were compiled to 

support soil property prediction including climate variables 

(temperature, precipitation, aridity indices), topographic 

attributes (elevation, slope, aspect, curvature, wetness index), 

vegetation indices (NDVI, EVI, LAI from MODIS), 

geological information (parent material, lithology), and land 

use classifications (crop types, management intensity). 

Temporal features captured seasonal dynamics through 

multi-year time series analysis of vegetation indices and 

climate variables. Spatial features incorporated neighborhood 

effects through focal statistics and texture analysis at multiple 

scales (100m, 500m, 1km windows). 

Feature selection employed recursive feature elimination 

with cross-validation to identify optimal covariate sets while 

avoiding overfitting. Final models utilized 47-52 

environmental covariates depending on study region and 

target soil property. 

 

Uncertainty Quantification Methods 

Five uncertainty quantification frameworks were 

implemented and evaluated: 

• Monte Carlo Dropout (MCD): Standard neural 

networks with dropout layers applied during inference. 

Uncertainty was estimated through prediction variance 

across 100 forward passes with dropout probability of 

0.1-0.2 optimized through cross-validation. 

• Deep Ensembles (DE): Five independent neural 

networks trained with different random initializations 

and bootstrap sampling of training data. Predictions were 

averaged and uncertainty estimated through ensemble 

variance plus individual model entropy. 

• Bayesian Neural Networks (BNN): Full Bayesian 

treatment with prior distributions over all network 

parameters. Hamiltonian Monte Carlo sampling was 

used for posterior inference with 1000 samples after 500 

burn-in iterations. 

• Variational Inference (VI): Approximate Bayesian 

inference using mean-field variational families with 

reparameterization trick. Evidence lower bound 

optimization employed Adam optimizer with learning 

rate scheduling. 

• Spatial Uncertainty Network (SUN): Novel 

architecture incorporating spatial autocorrelation 

structure through graph neural network components and 

uncertainty-aware loss functions that explicitly model 

spatial dependencies in prediction uncertainty. 

 

All methods employed identical base architectures with 3-4 

hidden layers, 128-256 neurons per layer, ReLU activations, 

and batch normalization. Training used early stopping based  

on validation loss with patience of 20 epochs. 

 

Calibration Assessment and Evaluation Metrics 

Uncertainty quantification performance was evaluated using 

multiple specialized metrics: 

• Prediction Interval Coverage Probability (PICP): 

Proportion of true values falling within predicted 

confidence intervals at specified confidence levels (90%, 

95%, 99%). 

• Mean Interval Width (MIW): Average width of 

prediction intervals, measuring uncertainty sharpness. 

Narrower intervals are preferable when maintaining 

proper calibration. 

• Calibration Error (CE): Average absolute difference 

between predicted confidence levels and observed 

coverage frequencies across confidence bins. 

• Reliability Diagrams: Graphical assessment of 

calibration by plotting predicted versus observed 

confidence levels. Well-calibrated models should follow 

the diagonal line representing perfect calibration. 

• Continuous Ranked Probability Score (CRPS): 

Proper scoring rule that evaluates both accuracy and 

calibration of probabilistic predictions. Lower CRPS 

values indicate better overall performance. 

 

Spatial Analysis of Uncertainty Patterns 

Spatial analysis examined relationships between prediction 

uncertainty and landscape characteristics including sampling 

density, topographic complexity, soil heterogeneity, and 

distance to training samples. Spatial autocorrelation in 

uncertainty estimates was assessed using Moran's I statistic 

and variogram analysis. 

Uncertainty maps were generated at 30-meter spatial 

resolution to match commonly used remote sensing products. 

Spatial clustering analysis identified regions of high 

uncertainty requiring additional sampling or specialized 

management approaches. 

 

Computational Efficiency Analysis 

Computational requirements were evaluated through training 

time, inference speed, memory usage, and scalability 

analysis. Efficiency comparisons included both development 

costs (training time) and operational costs (inference time for 

map generation). 

Parallelization strategies were evaluated for ensemble 

methods and Monte Carlo sampling approaches. GPU 

acceleration was implemented for all methods using CUDA-

optimized implementations. 

 

Economic Analysis and Decision Support 

Economic evaluation quantified the value of uncertainty 

information for precision agriculture applications through 

simulation of fertilizer management decisions. Scenarios 

compared deterministic predictions versus uncertainty-

informed strategies that adjust input rates based on prediction 

confidence levels. 

Cost-benefit analysis included fertilizer costs, application 

expenses, yield impacts, and environmental considerations. 

Risk assessment evaluated potential losses from over-

application or under-application based on prediction 

uncertainty levels. 
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Results 

Uncertainty Quantification Performance Comparison 

The Spatial Uncertainty Network (SUN) demonstrated 

superior performance across all soil properties and evaluation 

metrics (Table 1). PICP values at 95% confidence level were 

94.2% for SOC, 92.8% for pH, 91.5% for clay content, and 

89.7% for available nitrogen, indicating excellent calibration. 

Mean interval widths were reduced by 23-31% compared to 

traditional approaches while maintaining proper coverage. 

 

Table 1: Uncertainty quantification performance comparison across different methods 
 

Method 
Soil Organic Carbon Soil pH Clay Content Available Nitrogen 

PICP (%) MIW CRPS PICP (%) MIW CRPS PICP (%) MIW CRPS PICP (%) MIW CRPS 

Monte Carlo Dropout 89.3 1.84 0.52 87.2 0.89 0.31 85.7 8.9 2.14 83.4 31.2 8.45 

Deep Ensembles 91.8 1.67 0.48 90.1 0.81 0.28 88.5 8.1 1.95 86.9 28.7 7.82 

Bayesian Neural Networks 93.1 1.72 0.46 91.4 0.83 0.27 89.8 8.3 1.91 88.2 29.1 7.65 

Variational Inference 92.5 1.69 0.47 90.8 0.82 0.28 89.2 8.2 1.93 87.6 28.9 7.73 

Spatial Uncertainty Network 94.2 1.41 0.41 92.8 0.69 0.24 91.5 6.8 1.72 89.7 24.8 6.95 

 

Bayesian Neural Networks achieved excellent calibration 

with minimal bias in reliability assessments. Deep Ensembles 

provided robust uncertainty estimates with computational 

efficiency advantages, requiring 60% less training time than 

full Bayesian approaches while maintaining competitive 

performance. 

 

Calibration Analysis and Reliability Assessment 

Comprehensive calibration analysis revealed systematic 

patterns in uncertainty estimation quality across different 

methods (Table 2). The SUN method demonstrated superior 

calibration with average calibration error of 1.8% across all 

soil properties. Reliability diagrams showed minimal 

deviation from perfect calibration lines, indicating 

trustworthy uncertainty estimates. 

 
 

Table 2: Calibration assessment and reliability metrics for uncertainty quantification methods 
 

Method 
Average Calibration Error (%) Reliability Slope Brier Score 

SOC pH Clay N SOC pH Clay N SOC pH Clay N 

Monte Carlo Dropout 6.7 7.8 8.9 9.5 0.89 0.87 0.85 0.83 0.21 0.28 0.35 0.42 

Deep Ensembles 4.2 4.9 5.8 6.3 0.92 0.91 0.89 0.87 0.18 0.25 0.31 0.37 

Bayesian Neural Networks 3.1 3.6 4.2 4.8 0.94 0.93 0.91 0.89 0.16 0.23 0.29 0.34 

Variational Inference 3.5 4.1 4.7 5.2 0.93 0.92 0.90 0.88 0.17 0.24 0.30 0.35 

Spatial Uncertainty Network 1.8 2.1 2.6 3.2 0.96 0.95 0.94 0.92 0.14 0.20 0.26 0.31 

 

Reliability slopes close to 1.0 for the SUN method indicate 

excellent agreement between predicted and observed 

confidence levels. Brier scores confirmed superior 

probabilistic prediction quality, with the SUN method 

achieving the lowest scores across all soil properties. 

Monte Carlo Dropout showed systematic under-confidence 

with higher calibration errors and reliability slopes below 

0.90. This suggests that the method underestimates prediction 

uncertainty, potentially leading to overconfident decisions in 

practical applications. 

Spatial Patterns in Prediction Uncertainty 

Spatial analysis revealed systematic relationships between 

prediction uncertainty and landscape characteristics (Table 

3). Areas with sparse sampling density (<0.5 samples km⁻²) 

exhibited 2.3× higher average uncertainty compared to 

densely sampled regions (>1.5 samples km⁻²). Complex 

terrain with high topographic variability showed 45% greater 

uncertainty than homogeneous landscapes. 

Table 3: Spatial patterns in prediction uncertainty across different landscape characteristics 
 

Landscape Characteristic Sample Count 
Mean Uncertainty (CV) 

Uncertainty Range 
SOC pH Clay N 

Sampling Density 

Sparse (<0.5 km⁻²) 3,247 0.31 0.18 0.42 0.38 High 

Moderate (0.5-1.5 km⁻²) 12,856 0.21 0.12 0.28 0.25 Medium 

Dense (>1.5 km⁻²) 7,744 0.13 0.08 0.18 0.16 Low 

Topographic Complexity 

Simple (CV slope <0.3) 8,945 0.17 0.10 0.25 0.22 Low-Medium 

Moderate (CV slope 0.3-0.6) 10,234 0.23 0.14 0.32 0.28 Medium 

Complex (CV slope >0.6) 4,668 0.33 0.20 0.45 0.41 High 

Soil Heterogeneity 

Homogeneous (CV <0.2) 6,789 0.15 0.09 0.21 0.19 Low 

Moderate (CV 0.2-0.4) 11,456 0.24 0.14 0.33 0.29 Medium 

Heterogeneous (CV >0.4) 5,602 0.35 0.21 0.48 0.43 High 

 

Distance from training samples showed exponential 

relationships with prediction uncertainty, with uncertainty 

doubling at distances exceeding 2 km from nearest samples. 

This pattern was consistent across all soil properties and 

study regions, suggesting robust spatial dependency in 

uncertainty estimates. 

Spatial autocorrelation analysis revealed significant 

clustering of uncertainty levels (Moran's I = 0.67-0.74, 
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p<0.001), indicating that uncertainty maps provide 

meaningful spatial information for adaptive sampling and 

management strategies. 

 

Temporal Stability of Uncertainty Estimates 

Temporal validation over three years demonstrated excellent 

stability of uncertainty estimates with less than 8% variation 

in calibration metrics. The SUN method maintained PICP 

values within 2% of original calibration across all validation  

periods, indicating robust temporal transferability. 

Seasonal analysis showed modest variations in uncertainty 

levels related to vegetation phenology and soil moisture 

conditions. Summer periods exhibited 15% higher 

uncertainty for organic carbon predictions, likely reflecting 

increased measurement variability during active growing 

seasons. 

 

Computational Efficiency Analysis 

Computational efficiency analysis revealed significant 

differences among uncertainty quantification methods (Table 

4). Monte Carlo Dropout achieved the fastest inference times 

but provided lower quality uncertainty estimates. The SUN 

method balanced computational efficiency with superior 

performance, requiring only 1.8× longer inference compared 

to deterministic predictions. 

 

Table 4: Computational efficiency comparison of uncertainty quantification methods 
 

Method 
Training Time 

(hours) 

Inference Time 

(sec/km²) 

Memory Usage 

(GB) 

GPU Utilization 

(%) 

Scalability 

Rating 

Monte Carlo Dropout 12.4 0.23 4.2 65 Excellent 

Deep Ensembles 45.8 0.89 18.7 78 Good 

Bayesian Neural Networks 127.5 2.34 12.8 82 Fair 

Variational Inference 89.3 1.45 8.9 75 Good 

Spatial Uncertainty Network 67.2 0.41 6.7 71 Good 

 

Deep Ensembles required highest memory usage due to 

multiple model storage but offered excellent parallelization 

opportunities. Bayesian Neural Networks showed longest 

training times due to MCMC sampling requirements but 

provided highest quality uncertainty estimates. 

The SUN method achieved optimal balance between 

computational efficiency and uncertainty quality, making it 

suitable for operational deployment in large-scale soil 

mapping applications. 

 

Economic Impact of Uncertainty-Informed Decisions 

Economic analysis demonstrated significant value from 

uncertainty-informed management decisions. Precision 

fertilizer application guided by uncertainty estimates 

improved profitability by 12-18% compared to deterministic 

predictions through reduced over-application and optimized 

input timing. 

Risk assessment scenarios showed that uncertainty 

information enabled farmers to avoid costly over-treatment in 

low-confidence areas while ensuring adequate inputs in high-

confidence regions. Total input cost reductions of 8-15% 

were achieved while maintaining or improving yield 

outcomes. 

Environmental benefits included 22% reduction in excess 

nitrogen application and associated leaching risks. 

Uncertainty-guided management strategies supported more 

sustainable agricultural practices through evidence-based 

decision-making. 

 

Discussion 

The superior performance of the Spatial Uncertainty Network 

demonstrates the importance of incorporating spatial 

dependencies in uncertainty quantification for geographic 

applications. Traditional methods that assume spatial 

independence fail to capture the complex spatial relationships 

inherent in soil systems, leading to suboptimal uncertainty 

estimates. The SUN method's ability to model spatial 

autocorrelation in uncertainty patterns provides more realistic 

and useful uncertainty information for decision-making. 

The excellent calibration achieved across all uncertainty 

quantification methods indicates that modern deep learning 

approaches can provide trustworthy uncertainty estimates for 

soil mapping applications. The PICP values exceeding 90% 

for most methods suggest that practitioners can rely on these 

uncertainty estimates for risk assessment and decision 

support. However, the systematic differences in calibration 

quality highlight the importance of method selection based 

on specific application requirements. 

The spatial patterns in prediction uncertainty provide 

valuable insights for adaptive sampling strategies and 

precision agriculture applications. The strong relationship 

between sampling density and uncertainty levels confirms the 

importance of adequate ground truth data for reliable 

predictions. The identification of high-uncertainty regions 

enables targeted additional sampling to improve map quality 

where it matters most for management decisions. 

The temporal stability of uncertainty estimates over three 

years provides confidence in the long-term reliability of these 

methods for operational soil mapping systems. The modest 

seasonal variations suggest that uncertainty estimates remain 

valid across different environmental conditions, though 

periodic recalibration may be beneficial for optimal 

performance. 

The computational efficiency analysis reveals important 

trade-offs between uncertainty quality and operational 

feasibility. While full Bayesian approaches provide the 

highest quality uncertainty estimates, their computational 

requirements may limit practical deployment. The SUN 

method provides an optimal balance for operational 

applications, achieving high-quality uncertainty estimates 

with reasonable computational demands. 

The economic analysis demonstrates clear value propositions 

for uncertainty quantification in precision agriculture. The 

12-18% profitability improvements justify the additional 

computational costs of uncertainty estimation, while 

environmental benefits support sustainability goals. The 

ability to optimize input applications based on prediction 

confidence enables more efficient resource use and reduced 

environmental impact. 
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Conclusion 

This comprehensive study establishes practical frameworks 

for implementing uncertainty quantification in AI-predicted 

soil maps, with the Spatial Uncertainty Network emerging as 

the optimal approach for operational applications. The 

method achieves excellent calibration (PICP >92% across 

soil properties) while maintaining computational efficiency 

suitable for large-scale deployment. 

The systematic analysis of spatial patterns in prediction 

uncertainty provides valuable guidance for adaptive sampling 

strategies and precision agriculture applications. The strong 

relationships between uncertainty levels and landscape 

characteristics enable informed decision-making about where 

additional ground truth data would be most valuable for 

improving map quality. 

The demonstrated economic value of uncertainty-informed 

management decisions (12-18% profitability improvement) 

provides compelling justification for implementing 

uncertainty quantification in operational soil mapping 

systems. The ability to optimize input applications based on 

prediction confidence supports both economic and 

environmental sustainability goals. 

The temporal stability of uncertainty estimates over three 

years confirms the reliability of these methods for long-term 

applications, while the computational efficiency analysis 

provides practical guidance for method selection based on 

specific operational requirements and constraints. 

Future research should focus on extending uncertainty 

quantification to multi-temporal soil monitoring applications, 

developing user-friendly visualization tools for uncertainty 

communication, and integrating uncertainty estimates with 

economic optimization models for precision agriculture 

decision support. The incorporation of process-based 

knowledge into uncertainty estimation frameworks could 

further improve the physical realism and interpretability of 

uncertainty estimates. 

The findings provide a solid foundation for implementing 

uncertainty quantification in operational digital soil mapping 

systems, enabling evidence-based decision-making and 

supporting the transition toward more sustainable and 

efficient agricultural practices. 
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