[ Journal of Soil Future Research

JOWRLIAE ()7

SOIL

FUTURE RESEARCH

www.soilfuturejournal.com

Uncertainty Quantification in Al-Predicted Soil Maps: Bayesian Deep Learning and
Ensemble Methods for Reliable Digital Soil Mapping

Dr. Meera Subramanian **, Dr. Manish Patel 2, Deepika Rawat 3
1-3 Department of Environmental Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, India

* Corresponding Author: Dr. Meera Subramanian

Article Info

P-ISSN: 3051-3448
E-ISSN: 3051-3456
Volume: 06

Issue: 01

January - June 2025
Received: 06-01-2025
Accepted: 08-02-2025
Published: 09-03-2025
Page No: 13-18

Abstract

Digital soil mapping using artificial intelligence has demonstrated remarkable
accuracy in predicting soil properties, but uncertainty quantification remains a critical
challenge for practical implementation and decision-making in precision agriculture.
This study presents a comprehensive evaluation of uncertainty quantification methods
for Al-predicted soil maps, comparing Bayesian deep learning, ensemble approaches,
and Monte Carlo dropout techniques across diverse agricultural landscapes. We
developed and evaluated five uncertainty quantification frameworks: Monte Carlo
Dropout (MCD), Deep Ensembles (DE), Bayesian Neural Networks (BNN),
Variational Inference (VI), and a novel Spatial Uncertainty Network (SUN) using
23,847 soil samples collected across six agro-ecological zones in North America and
Europe. The models predicted soil organic carbon (SOC), pH, clay content, and
available nitrogen with associated uncertainty estimates at 30-meter spatial resolution.
Ground truth validation was conducted using independent test datasets comprising
4,769 samples reserved from model training. The Spatial Uncertainty Network
achieved superior performance with prediction interval coverage probability (PICP)
of 94.2% for SOC, 92.8% for pH, 91.5% for clay content, and 89.7% for nitrogen at
95% confidence levels. Mean interval width (MIW) was reduced by 23-31% compared
to traditional approaches while maintaining calibration reliability. Bayesian Neural
Networks demonstrated excellent calibration with reliability diagrams showing
minimal deviation from perfect calibration lines. Ensemble methods provided robust
uncertainty estimates with computational efficiency advantages over full Bayesian
approaches. Spatial analysis revealed systematic patterns in prediction uncertainty
related to sampling density, topographic complexity, and soil heterogeneity. Areas
with sparse sampling showed 2.3x higher uncertainty than densely sampled regions.
Complex terrain exhibited 45% greater uncertainty compared to homogeneous
landscapes. Temporal validation over three years confirmed uncertainty estimate
stability with less than 8% variation in calibration metrics. Economic analysis
demonstrated that uncertainty-informed management decisions improved profitability
by 12-18% compared to deterministic predictions through optimized fertilizer
application and reduced over-treatment risks. The study establishes practical
frameworks for implementing uncertainty quantification in operational soil mapping
systems, enabling evidence-based decision-making and risk assessment in precision
agriculture applications.
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Intervals, Spatial Uncertainty, Precision Agriculture, Model Calibration

Introduction

Digital soil mapping using artificial intelligence has revolutionized our ability to predict soil properties at high spatial resolution,
enabling precision agriculture applications and supporting sustainable land management decisions M. However, the practical
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implementation of Al-predicted soil maps faces a critical
challenge: the quantification and communication of
prediction uncertainty. Without reliable uncertainty
estimates, decision-makers cannot assess the reliability of
soil predictions or optimize management strategies based on
prediction confidence levels 2,

Traditional machine learning approaches provide point
predictions without uncertainty information, limiting their
utility for risk-sensitive agricultural applications. Farmers
and agronomists need to know not only what the predicted
soil property value is, but also how confident they can be in
that prediction to make informed decisions about fertilizer
application, crop selection, and soil management practices 1.
The absence of uncertainty information can lead to sub-
optimal decisions, over-treatment with inputs, or missed
opportunities for targeted interventions.

Uncertainty in soil property predictions arises from multiple
sources including measurement errors in training data, model
limitations in capturing complex soil-environment
relationships, spatial interpolation between sampling points,
and temporal variability in soil conditions . Aleatory
uncertainty reflects inherent randomness in soil systems and
measurement processes, Wwhile epistemic uncertainty
represents knowledge limitations that could potentially be
reduced through additional data or improved models ©1.
Bayesian deep learning has emerged as a promising approach
for uncertainty quantification in machine learning
applications, providing principled frameworks for estimating
both aleatory and epistemic uncertainties . Bayesian neural
networks place probability distributions over model
parameters, enabling uncertainty propagation through
network predictions. However, exact Bayesian inference is
computationally intractable for deep networks, requiring
approximate inference techniques such as variational
inference or Monte Carlo methods.

Monte Carlo dropout represents a computationally efficient
approximation to Bayesian inference that estimates
uncertainty by treating dropout as a Bayesian approximation
[, By applying dropout during inference and averaging
predictions across multiple forward passes, the method
provides uncertainty estimates without requiring specialized
training procedures. However, the theoretical foundations
and practical calibration of Monte Carlo dropout remain
subjects of ongoing research.

Ensemble methods offer alternative approaches to
uncertainty quantification by training multiple models with
different initializations, architectures, or training subsets ©l.
Deep ensembles have shown excellent performance in
uncertainty estimation tasks, providing well-calibrated
predictions across various applications. The diversity among
ensemble members captures different aspects of model
uncertainty, while averaging reduces prediction variance and
improves overall accuracy.

Variational inference provides mathematically principled
approximations to Bayesian posteriors through optimization
of variational lower bounds [l. Modern variational
techniques can handle complex posterior distributions while
maintaining computational tractability. However, the quality
of variational approximations depends on the choice of
variational family and optimization procedures.

Spatial uncertainty quantification faces additional challenges
unique to geographical applications. Spatial autocorrelation
in soil properties means that prediction uncertainty is not
independent across locations, requiring  specialized
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approaches that account for spatial dependencies [,
Traditional uncertainty measures may underestimate
uncertainty in areas of high spatial variability or overestimate
uncertainty in homogeneous regions.

The evaluation of uncertainty quantification methods
requires specialized metrics beyond traditional accuracy
measures. Calibration assessment examines whether
predicted uncertainty levels match observed prediction
errors. Well-calibrated models should have 95% of true
values falling within 95% prediction intervals. Sharpness
measures the informativeness of uncertainty estimates, with
narrower intervals being preferable when maintaining proper
calibration (11,

Practical implementation of uncertainty quantification in
operational soil mapping systems must balance accuracy,
computational efficiency, and interpretability. Real-time
applications may require efficient uncertainty estimation
methods that can provide timely results for decision-making.
The communication of uncertainty information to end-users
presents additional challenges in visualization and
interpretation 12,

This study aims to develop and evaluate comprehensive
uncertainty quantification frameworks for Al-predicted soil
maps, addressing both methodological challenges and
practical implementation considerations. Specific objectives
include: (1) comparing different uncertainty quantification
approaches for soil property prediction, (2) evaluating
calibration and reliability of uncertainty estimates, (3)
analyzing spatial patterns in prediction uncertainty, (4)
assessing computational efficiency and scalability, and (5)
demonstrating practical applications for precision agriculture
decision-making [,

Materials and Methods

Study Areas and Data Collection

The research was conducted across six representative agro-
ecological zones to ensure comprehensive evaluation of
uncertainty  quantification methods under diverse
environmental conditions. Study areas included: temperate
continental croplands in lowa, USA (42°00'N, 93°30'W),
boreal agricultural regions in Alberta, Canada (53°30'N,
113°30'W), Mediterranean agricultural areas in Andalusia,
Spain (37°30'N, 4°30'W), subtropical farming systems in Sdo
Paulo, Brazil (22°30'S, 47°30'W), semi-arid rangelands in
Queensland, Australia (27°30'S, 152°30'E), and temperate
maritime regions in Normandy, France (49°00'N, 0°30'E).

A total of 23,847 soil samples were collected using stratified
random sampling design with minimum 250-meter spacing
to ensure spatial independence. Sampling density varied from
0.8 samples km™ in homogeneous areas to 2.1 samples km™
in heterogeneous terrain. Samples were collected from 0-20
cm depth during optimal conditions to minimize temporal
variability effects.

Independent validation datasets comprising 4,769 samples
(20% of total) were reserved from model training and used
exclusively for uncertainty quantification evaluation.
Temporal validation employed additional samples collected
1-3 years after initial sampling to assess uncertainty estimate
stability over time.

Laboratory Analysis and Quality Control

Soil samples were analyzed for four target properties using
standardized protocols: soil organic carbon (SOC) through
dry combustion method, pH in 1:2 soil-water suspension,
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clay content via laser diffraction particle size analysis, and
available nitrogen through alkaline permanganate extraction.
All analyses included replicate measurements and quality
control samples comprising 15% of total samples.
Measurement uncertainty was quantified through inter-
laboratory comparison exercises and replicate analysis,
providing estimates of analytical precision for uncertainty
decomposition analysis. Standard deviations for laboratory
measurements were: SOC (£0.08%), pH (£0.05 units), clay
content (+1.2%), and available nitrogen (£2.1 mg kg™).

Environmental Covariates and Feature Engineering
Comprehensive environmental datasets were compiled to
support soil property prediction including climate variables
(temperature, precipitation, aridity indices), topographic
attributes (elevation, slope, aspect, curvature, wetness index),
vegetation indices (NDVI, EVI, LAl from MODIS),
geological information (parent material, lithology), and land
use classifications (crop types, management intensity).
Temporal features captured seasonal dynamics through
multi-year time series analysis of vegetation indices and
climate variables. Spatial features incorporated neighborhood
effects through focal statistics and texture analysis at multiple
scales (100m, 500m, 1km windows).

Feature selection employed recursive feature elimination
with cross-validation to identify optimal covariate sets while
avoiding overfitting. Final models utilized 47-52
environmental covariates depending on study region and
target soil property.

Uncertainty Quantification Methods
Five uncertainty quantification
implemented and evaluated:

e Monte Carlo Dropout (MCD): Standard neural
networks with dropout layers applied during inference.
Uncertainty was estimated through prediction variance
across 100 forward passes with dropout probability of
0.1-0.2 optimized through cross-validation.

e Deep Ensembles (DE): Five independent neural
networks trained with different random initializations
and bootstrap sampling of training data. Predictions were
averaged and uncertainty estimated through ensemble
variance plus individual model entropy.

e Bayesian Neural Networks (BNN): Full Bayesian
treatment with prior distributions over all network
parameters. Hamiltonian Monte Carlo sampling was
used for posterior inference with 1000 samples after 500
burn-in iterations.

e Variational Inference (VI): Approximate Bayesian
inference using mean-field variational families with
reparameterization trick. Evidence lower bound
optimization employed Adam optimizer with learning
rate scheduling.

e Spatial Uncertainty Network (SUN): Novel
architecture incorporating spatial autocorrelation
structure through graph neural network components and
uncertainty-aware loss functions that explicitly model
spatial dependencies in prediction uncertainty.

frameworks  were

All methods employed identical base architectures with 3-4
hidden layers, 128-256 neurons per layer, ReLU activations,
and batch normalization. Training used early stopping based
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on validation loss with patience of 20 epochs.

Calibration Assessment and Evaluation Metrics
Uncertainty quantification performance was evaluated using
multiple specialized metrics:

e Prediction Interval Coverage Probability (PICP):
Proportion of true values falling within predicted
confidence intervals at specified confidence levels (90%,
95%, 99%).

e Mean Interval Width (MIW): Average width of
prediction intervals, measuring uncertainty sharpness.
Narrower intervals are preferable when maintaining
proper calibration.

e Calibration Error (CE): Average absolute difference
between predicted confidence levels and observed
coverage frequencies across confidence bins.

o Reliability Diagrams: Graphical assessment of
calibration by plotting predicted versus observed
confidence levels. Well-calibrated models should follow
the diagonal line representing perfect calibration.

e Continuous Ranked Probability Score (CRPS):
Proper scoring rule that evaluates both accuracy and
calibration of probabilistic predictions. Lower CRPS
values indicate better overall performance.

Spatial Analysis of Uncertainty Patterns

Spatial analysis examined relationships between prediction
uncertainty and landscape characteristics including sampling
density, topographic complexity, soil heterogeneity, and
distance to training samples. Spatial autocorrelation in
uncertainty estimates was assessed using Moran's | statistic
and variogram analysis.

Uncertainty maps were generated at 30-meter spatial
resolution to match commonly used remote sensing products.
Spatial clustering analysis identified regions of high
uncertainty requiring additional sampling or specialized
management approaches.

Computational Efficiency Analysis

Computational requirements were evaluated through training
time, inference speed, memory usage, and scalability
analysis. Efficiency comparisons included both development
costs (training time) and operational costs (inference time for
map generation).

Parallelization strategies were evaluated for ensemble
methods and Monte Carlo sampling approaches. GPU
acceleration was implemented for all methods using CUDA-
optimized implementations.

Economic Analysis and Decision Support

Economic evaluation quantified the value of uncertainty
information for precision agriculture applications through
simulation of fertilizer management decisions. Scenarios
compared deterministic predictions versus uncertainty-
informed strategies that adjust input rates based on prediction
confidence levels.

Cost-benefit analysis included fertilizer costs, application
expenses, yield impacts, and environmental considerations.
Risk assessment evaluated potential losses from over-
application or under-application based on prediction
uncertainty levels.
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Results

Uncertainty Quantification Performance Comparison
The Spatial Uncertainty Network (SUN) demonstrated
superior performance across all soil properties and evaluation
metrics (Table 1). PICP values at 95% confidence level were
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94.2% for SOC, 92.8% for pH, 91.5% for clay content, and
89.7% for available nitrogen, indicating excellent calibration.
Mean interval widths were reduced by 23-31% compared to
traditional approaches while maintaining proper coverage.

Table 1: Uncertainty quantification performance comparison across different methods

Method Soil Organic Carbon Soil pH Clay Content Available Nitrogen
PICP (%) | MIW [CRPSPICP (%) MIW |CRPS| PICP (%) |MIW |CRPSPICP (%)MIWCRPS

Monte Carlo Dropout 89.3 1.84 |0.52 87.2 0.89 | 0.31 85.7 89 [214 834 |31.2]8.45
Deep Ensembles 91.8 1.67 {048 | 90.1 0.81 | 0.28 88.5 81 |195| 869 [28.7]7.82
Bayesian Neural Networks 93.1 172 |046| 914 0.83 | 0.27 89.8 83 |191| 882 [29.1|7.65
Variational Inference 92,5 1.69 {047 | 90.8 0.82 | 0.28 89.2 82 |193| 876 [28.9]|7.73
Spatial Uncertainty Network 94.2 141 |041| 928 0.69 | 0.24 915 6.8 | 1.72 89.7 [24.8|6.95

Bayesian Neural Networks achieved excellent calibration
with minimal bias in reliability assessments. Deep Ensembles
provided robust uncertainty estimates with computational
efficiency advantages, requiring 60% less training time than

Comprehensive calibration analysis revealed systematic
patterns in uncertainty estimation quality across different
methods (Table 2). The SUN method demonstrated superior
calibration with average calibration error of 1.8% across all

full Bayesian approaches while maintaining competitive soil properties. Reliability diagrams showed minimal
performance. deviation from perfect calibration lines, indicating
trustworthy uncertainty estimates.
Calibration Analysis and Reliability Assessment
Table 2: Calibration assessment and reliability metrics for uncertainty quantification methods
Method Average Calibration Error (%) Reliability Slope Brier Score
sOC pH | Clay N sOC pH Clay N SOC | pH Clay N

Monte Carlo Dropout 6.7 7.8 8.9 9.5 0.89 0.87 0.85 | 0.83 | 0.21 | 0.28 0.35 0.42

Deep Ensembles 4.2 4.9 5.8 6.3 0.92 0.91 0.89 | 0.87 | 0.18 | 0.25 0.31 0.37

Bayesian Neural Networks 3.1 3.6 4.2 4.8 0.94 0.93 091 | 0.89 | 0.16 | 0.23 0.29 0.34

Variational Inference 3.5 4.1 4.7 5.2 0.93 0.92 0.90 | 0.88 | 0.17 | 0.24 0.30 0.35

Spatial Uncertainty Network] 1.8 2.1 2.6 3.2 0.96 0.95 0.94 | 0.92 | 0.14 | 0.20 0.26 0.31

Reliability slopes close to 1.0 for the SUN method indicate
excellent agreement between predicted and observed
confidence levels. Brier scores confirmed superior
probabilistic prediction quality, with the SUN method
achieving the lowest scores across all soil properties.

Monte Carlo Dropout showed systematic under-confidence
with higher calibration errors and reliability slopes below
0.90. This suggests that the method underestimates prediction
uncertainty, potentially leading to overconfident decisions in
practical applications.

Spatial Patterns in Prediction Uncertainty

Spatial analysis revealed systematic relationships between
prediction uncertainty and landscape characteristics (Table
3). Areas with sparse sampling density (<0.5 samples km2)
exhibited 2.3x higher average uncertainty compared to
densely sampled regions (>1.5 samples km™). Complex
terrain with high topographic variability showed 45% greater
uncertainty than homogeneous landscapes.

Table 3: Spatial patterns in prediction uncertainty across different landscape characteristics

Landscape Characteristic Sample Count sglcf a|n l;r;'cell’tacl:r;g (CI:Vi\I Uncertainty Range
Sampling Densit
Sparse (<0.5 km™2) 3,247 031 | 018 | 042 | 0.38 High
Moderate (0.5-1.5 km™) 12,856 021 | 012 | 0.28 | 0.25 Medium
Dense (>1.5 km™) 7,744 0.13 | 0.08 | 0.18 | 0.16 Low
Topographic Complexity
Simple (CV slope <0.3) 8,945 0.17 | 0.10 | 0.25 | 0.22 Low-Medium
Moderate (CV slope 0.3-0.6) 10,234 0.23 | 0.14 | 0.32 | 0.28 Medium
Complex (CV slope >0.6) 4,668 0.33 | 020 | 045 | 041 High
Soil Heterogeneity
Homogeneous (CV <0.2) 6,789 0.15 | 0.09 | 0.21 | 0.19 Low
Moderate (CV 0.2-0.4) 11,456 0.24 | 014 | 0.33 | 0.29 Medium
Heterogeneous (CV >0.4) 5,602 0.35 | 0.21 | 0.48 | 043 High

Distance from training samples showed exponential
relationships with prediction uncertainty, with uncertainty
doubling at distances exceeding 2 km from nearest samples.
This pattern was consistent across all soil properties and

study regions, suggesting robust spatial dependency in
uncertainty estimates.

Spatial autocorrelation analysis revealed
clustering of uncertainty levels (Moran's | =

significant
0.67-0.74,
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p<0.001), indicating that uncertainty maps provide
meaningful spatial information for adaptive sampling and
management strategies.

Temporal Stability of Uncertainty Estimates

Temporal validation over three years demonstrated excellent
stability of uncertainty estimates with less than 8% variation
in calibration metrics. The SUN method maintained PICP
values within 2% of original calibration across all validation
periods, indicating robust temporal transferability.

Seasonal analysis showed modest variations in uncertainty
levels related to vegetation phenology and soil moisture
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uncertainty for organic carbon predictions, likely reflecting
increased measurement variability during active growing
Seasons.

Computational Efficiency Analysis

Computational efficiency analysis revealed significant
differences among uncertainty quantification methods (Table
4). Monte Carlo Dropout achieved the fastest inference times
but provided lower quality uncertainty estimates. The SUN
method balanced computational efficiency with superior
performance, requiring only 1.8x longer inference compared
to deterministic predictions.

conditions. Summer periods exhibited 15% higher
Table 4: Computational efficiency comparison of uncertainty quantification methods

Method Training Time Inference Time Memory Usage GPU Utilization Scalability
(hours) (sec/km?) (GB) (%) Rating

Monte Carlo Dropout 12.4 0.23 4.2 65 Excellent
Deep Ensembles 45.8 0.89 18.7 78 Good

Bayesian Neural Networks 1275 2.34 12.8 82 Fair

Variational Inference 89.3 1.45 8.9 75 Good
Spatial Uncertainty Network 67.2 0.41 6.7 71 Good

Deep Ensembles required highest memory usage due to
multiple model storage but offered excellent parallelization
opportunities. Bayesian Neural Networks showed longest
training times due to MCMC sampling requirements but
provided highest quality uncertainty estimates.

The SUN method achieved optimal balance between
computational efficiency and uncertainty quality, making it
suitable for operational deployment in large-scale soil
mapping applications.

Economic Impact of Uncertainty-Informed Decisions
Economic analysis demonstrated significant value from
uncertainty-informed management decisions. Precision
fertilizer application guided by uncertainty estimates
improved profitability by 12-18% compared to deterministic
predictions through reduced over-application and optimized
input timing.

Risk assessment scenarios showed that uncertainty
information enabled farmers to avoid costly over-treatment in
low-confidence areas while ensuring adequate inputs in high-
confidence regions. Total input cost reductions of 8-15%
were achieved while maintaining or improving yield
outcomes.

Environmental benefits included 22% reduction in excess
nitrogen application and associated leaching risks.
Uncertainty-guided management strategies supported more
sustainable agricultural practices through evidence-based
decision-making.

Discussion

The superior performance of the Spatial Uncertainty Network
demonstrates the importance of incorporating spatial
dependencies in uncertainty quantification for geographic
applications. Traditional methods that assume spatial
independence fail to capture the complex spatial relationships
inherent in soil systems, leading to suboptimal uncertainty
estimates. The SUN method's ability to model spatial
autocorrelation in uncertainty patterns provides more realistic
and useful uncertainty information for decision-making.

The excellent calibration achieved across all uncertainty
quantification methods indicates that modern deep learning
approaches can provide trustworthy uncertainty estimates for
soil mapping applications. The PICP values exceeding 90%
for most methods suggest that practitioners can rely on these
uncertainty estimates for risk assessment and decision
support. However, the systematic differences in calibration
quality highlight the importance of method selection based
on specific application requirements.

The spatial patterns in prediction uncertainty provide
valuable insights for adaptive sampling strategies and
precision agriculture applications. The strong relationship
between sampling density and uncertainty levels confirms the
importance of adequate ground truth data for reliable
predictions. The identification of high-uncertainty regions
enables targeted additional sampling to improve map quality
where it matters most for management decisions.

The temporal stability of uncertainty estimates over three
years provides confidence in the long-term reliability of these
methods for operational soil mapping systems. The modest
seasonal variations suggest that uncertainty estimates remain
valid across different environmental conditions, though
periodic recalibration may be beneficial for optimal
performance.

The computational efficiency analysis reveals important
trade-offs between uncertainty quality and operational
feasibility. While full Bayesian approaches provide the
highest quality uncertainty estimates, their computational
requirements may limit practical deployment. The SUN
method provides an optimal balance for operational
applications, achieving high-quality uncertainty estimates
with reasonable computational demands.

The economic analysis demonstrates clear value propositions
for uncertainty quantification in precision agriculture. The
12-18% profitability improvements justify the additional
computational costs of uncertainty estimation, while
environmental benefits support sustainability goals. The
ability to optimize input applications based on prediction
confidence enables more efficient resource use and reduced
environmental impact.
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Conclusion

This comprehensive study establishes practical frameworks
for implementing uncertainty quantification in Al-predicted
soil maps, with the Spatial Uncertainty Network emerging as
the optimal approach for operational applications. The
method achieves excellent calibration (PICP >92% across
soil properties) while maintaining computational efficiency
suitable for large-scale deployment.

The systematic analysis of spatial patterns in prediction
uncertainty provides valuable guidance for adaptive sampling
strategies and precision agriculture applications. The strong
relationships between uncertainty levels and landscape
characteristics enable informed decision-making about where
additional ground truth data would be most valuable for
improving map quality.

The demonstrated economic value of uncertainty-informed
management decisions (12-18% profitability improvement)
provides compelling justification for implementing
uncertainty quantification in operational soil mapping
systems. The ability to optimize input applications based on
prediction confidence supports both economic and
environmental sustainability goals.

The temporal stability of uncertainty estimates over three
years confirms the reliability of these methods for long-term
applications, while the computational efficiency analysis
provides practical guidance for method selection based on
specific operational requirements and constraints.

Future research should focus on extending uncertainty
quantification to multi-temporal soil monitoring applications,
developing user-friendly visualization tools for uncertainty
communication, and integrating uncertainty estimates with
economic optimization models for precision agriculture
decision support. The incorporation of process-based
knowledge into uncertainty estimation frameworks could
further improve the physical realism and interpretability of
uncertainty estimates.

The findings provide a solid foundation for implementing
uncertainty quantification in operational digital soil mapping
systems, enabling evidence-based decision-making and
supporting the transition toward more sustainable and
efficient agricultural practices.
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