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The widespread adoption of artificial intelligence in digital soil mapping has achieved
remarkable predictive accuracy, but the "black box™ nature of complex models limits
their acceptance among soil scientists, agronomists, and land managers who require
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The SSEF approach achieved superior explanation quality with fidelity scores of 0.94 for SOC,
0.91 for pH, 0.89 for clay content, and 0.87 for nitrogen predictions. Feature importance
rankings showed high consistency (Spearman correlation >0.85) across different XAl methods,
with climate variables (precipitation, temperature) and topographic indices (elevation, slope)
emerging as primary predictors. SHAP analysis revealed non-linear relationships and
interaction effects previously undetected through traditional statistical approaches, including
threshold effects of precipitation on organic carbon accumulation and complex terrain-climate
interactions affecting soil pH. Local explanations through LIME successfully identified region-
specific prediction drivers, with coastal areas prioritizing salinity-related variables and
mountainous regions emphasizing elevation and slope factors. Attention mechanism
visualization in transformer models revealed spatial patterns in feature importance that aligned
with known soil formation processes. User evaluation studies with 47 soil scientists and
agronomists demonstrated significant improvements in model trust (78% increase), decision
confidence (65% increase), and practical adoption intentions (82% increase) when XAl
explanations were provided. Computational overhead for explanation generation averaged 12-
18% of prediction time, making real-time interpretability feasible for operational applications.
The study establishes practical frameworks for implementing explainable Al in soil science
applications, bridging the gap between predictive accuracy and scientific understanding while
supporting evidence-based agricultural decision-making.
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Introduction

The integration of artificial intelligence in digital soil mapping has transformed our ability to predict soil properties at
unprecedented scales and resolutions, enabling precision agriculture and sustainable land management practices . However,
the increasing complexity of Al models, particularly deep learning architectures, has created a significant barrier to adoption
among soil scientists and agricultural practitioners who require understanding of model predictions to make informed decisions
2. The "black box" nature of complex models undermines trust and limits their practical utility in domains where prediction
rationale is as important as prediction accuracy.
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Explainable Al (XAl) has emerged as a critical research area
addressing the interpretability challenge in machine learning
applications [Bl. XAl encompasses techniques and
methodologies designed to make Al model decisions
transparent, interpretable, and trustworthy while maintaining
predictive performance. For soil science applications,
explainability is particularly crucial because soil formation
processes are complex, spatially variable, and influenced by
multiple interacting environmental factors that practitioners
need to understand for effective management.

The need for interpretable soil prediction models extends
beyond scientific curiosity to practical necessity.
Agronomists making fertilizer recommendations need to
understand why specific nutrient levels are predicted for
particular fields. Environmental consultants assessing soil
contamination require insight into which factors drive
pollution predictions. Policy makers developing land use
regulations need transparent evidence supporting soil quality
assessments M. Without interpretable models, these critical
decisions rely on blind trust in algorithmic predictions.
Traditional statistical approaches in soil science, such as
multiple linear regression and geostatistical methods, provide
inherent interpretability through parameter coefficients and
variogram structures . However, these methods often fail to
capture the complex non-linear relationships and high-
dimensional interactions characteristic of soil-environment
systems. Modern machine learning approaches like ensemble
methods and neural networks achieve superior predictive
accuracy but sacrifice interpretability, creating a fundamental
trade-off between performance and understanding.

The challenge of model interpretability in soil science is
compounded by the heterogeneous nature of soil data and the
diverse backgrounds of end-users. Soil scientists require
explanations that align with pedological theory and soil
formation factors (climate, organisms, relief, parent material,
time). Agricultural practitioners need interpretations focused
on management-relevant variables like nutrient availability
and water retention. Environmental managers prioritize
explanations related to contamination sources and
remediation potential [,

SHAP (SHapley Additive exPlanations) represents one of the
most theoretically grounded approaches to model
explanation, based on cooperative game theory principles 1.
SHAP provides consistent and efficient explanations by fairly
attributing prediction contributions to individual features
while satisfying mathematical axioms for explanation
quality. The method works across different model types and
provides both global and local explanations, making it
versatile for diverse soil science applications.

LIME (Local Interpretable Model-agnostic Explanations)
offers an alternative approach focused on explaining
individual predictions through local linear approximations I,
By perturbing input features and observing prediction
changes, LIME generates interpretable explanations for
specific instances. This approach is particularly valuable for
understanding why models make specific predictions for
individual soil samples or locations.

Integrated  Gradients provides explanation methods
specifically designed for neural networks, computing feature
importance through integration of gradients along paths from
baseline to input !, This approach addresses some limitations
of simpler gradient-based methods and provides more stable
explanations for deep learning models increasingly used in
soil science applications.
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Attention mechanisms in transformer-based models offer
built-in interpretability by revealing which input features the
model focuses on when making predictions 1%, For spatial
applications like soil mapping, attention weights can reveal
geographical patterns in feature importance that may align
with known soil formation processes and landscape
relationships.

The evaluation of explanation quality presents significant
challenges, as there is often no ground truth for what
constitutes a "correct" explanation. Fidelity measures assess
how well explanations reflect actual model behavior, while
stability evaluates consistency of explanations across similar
inputs. User studies provide crucial validation by measuring
whether explanations actually improve human understanding
and decision-making 11,

The computational efficiency of explanation methods is
critical for operational deployment in soil mapping
applications. Real-time explanations enable interactive
exploration of model predictions, while batch explanation
generation supports systematic analysis of large-scale soil
surveys. The trade-off between explanation quality and
computational cost must be carefully balanced for practical
implementation 2,

This study aims to develop and evaluate comprehensive XAl
frameworks specifically designed for soil prediction
applications, addressing both technical challenges and user
needs in digital soil mapping. Specific objectives include: (1)
comparing different XAl approaches for soil property
prediction models, (2) evaluating explanation quality and
consistency across different model types, (3) analyzing
feature importance patterns and their alignment with soil
science knowledge, (4) assessing user perception and trust in
explanation-enhanced models, and (5) developing practical
guidelines for implementing XAl in operational soil mapping
systems [13],

The integration of XAl in soil science represents a paradigm
shift toward transparent and trustworthy Al applications that
combine predictive power with scientific understanding. This
approach supports evidence-based decision-making while
building user confidence in Al-assisted soil management and
agricultural planning 24,

Materials and Methods

Study Areas and Data Collection

The research was conducted across six representative
agricultural regions to ensure comprehensive evaluation of
XAl methods under diverse environmental conditions. Study
areas included: Corn Belt agriculture in lowa, USA (42°15'N,
93°45'W), Prairie agriculture in Saskatchewan, Canada
(52°30'N, 106°30'W), Mediterranean agriculture in Tuscany,
Italy (43°30'N, 11°15'W), Subtropical agriculture in Séo
Paulo, Brazil (23°30'S, 46°45'W), Temperate agriculture in
Norfolk, England (52°45'N, 1°15'E), and Semi-arid
agriculture in New South Wales, Australia (32°30'S,
147°30'E).

A total of 18,934 soil samples were collected using stratified
random sampling design stratified by soil type, land use, and
topographic position. Sampling density averaged 1.2 samples
per km2 with higher density in heterogeneous areas. Samples
were collected from 0-20 cm depth during standardized
conditions to minimize temporal variability.

Quality control procedures included duplicate sampling (10%
of locations), split sample analysis, and inter-laboratory
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calibration exercises to ensure data consistency across study
regions.

Laboratory Analysis and Target Variables

Four soil properties were selected as prediction targets based
on their importance for agricultural management: soil organic
carbon (SOC) determined by dry combustion, pH measured
in 1:2 soil-water suspension, clay content through laser
diffraction particle size analysis, and available nitrogen via
alkaline permanganate extraction.

All analyses followed standardized international protocols
with quality assurance including certified reference materials,
blank samples, and replicate analyses. Measurement
uncertainties were quantified and incorporated into model
uncertainty estimates.

Environmental Covariates and Feature Engineering

A comprehensive suite of 68 environmental covariates was
compiled representing the five soil formation factors: climate
(19 variables), organisms/vegetation (15 variables),
relief/topography (18 variables), parent material/geology (8
variables), and time/age (8 variables).

Climate variables included temperature and precipitation
statistics from WorldClim database, aridity indices, and
growing degree days. Vegetation variables comprised NDVI
time series, phenology metrics, and land cover classifications
from MODIS and Landsat imagery. Topographic variables
were derived from 30-meter SRTM DEM including
elevation, slope, aspect, curvature, wetness index, and flow
accumulation.

Geological variables incorporated parent material types,
lithology, and age from global geological databases.
Temporal variables included land use history, cultivation
duration, and management intensity indices.

Feature engineering included multi-scale analysis through
focal statistics at 100m, 500m, and 1km windows, temporal
aggregation of vegetation indices, and derivation of climate-
topography interaction terms.

Machine Learning Model Development

Four model architectures were implemented to evaluate XAl

effectiveness across different algorithm types:

e Random Forest (RF): Ensemble of 500 decision trees
with maximum depth of 15 and minimum samples per
leaf of 5. Feature importance calculated through mean
decrease in impurity and permutation importance.

e XGBoost (XGB): Gradient boosting with 1000
estimators, learning rate of 0.1, and maximum depth of
8. Early stopping based on validation loss with 50-round
patience.

e Neural Networks (NN): Multi-layer perceptrons with 3-
4 hidden layers, 128-256 neurons per layer, ReLU
activation, and dropout regularization (0.2-0.3).

e Transformer Models (TF): Vision transformer
architecture adapted for tabular data with self-attention
mechanisms and positional encodings for spatial
features.

All models employed 5-fold cross-validation with spatial
blocking to account for spatial autocorrelation.
Hyperparameter optimization used Bayesian optimization
with 100 iterations per model type.
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Explainable Al Implementation

Five XAl approaches were implemented and evaluated:

e SHAP (SHapley Additive exPlanations): Tree
Explainer for tree-based models and Kernel Explainer
for neural networks. Shapley values calculated for all
features and samples, providing additive feature
attribution with theoretical guarantees.

e LIME (Local Interpretable  Model-agnostic
Explanations): Local linear models fitted around
individual  predictions using  perturbation-based
sampling.  Feature  selection employed Lasso
regularization with cross-validation for optimal sparsity.

e Integrated Gradients (IG): Gradient integration along
linear paths from baseline to input features for neural
network models. Baseline values set to feature means
with 50 integration steps for stable attribution.

e Attention Mechanisms (AM): Native attention weights
from transformer models visualized to show feature
importance patterns. Multi-head attention averaged
across heads and layers for comprehensive attribution.

e  Soil-Specific Explanation Framework (SSEF): Novel
approach incorporating pedological knowledge through
hierarchical explanations organized by soil formation
factors. Physical constraints ensure explanations align
with soil science principles.

Explanation Quality Assessment

Multiple metrics evaluated explanation

consistency:

o Fidelity: Correlation between explanation scores and
actual feature contributions measured through feature
ablation studies. Higher fidelity indicates explanations
accurately reflect model behavior.

e Stability: Consistency of explanations for similar inputs
assessed  through perturbation analysis. Stable
explanations should remain consistent for minor input
changes.

o Consistency: Agreement between different XAl
methods measured through rank correlation of feature
importance scores. High consistency suggests robust
explanation quality.

o Plausibility: Expert evaluation of explanation alignment
with soil science knowledge conducted through
structured interviews with domain experts.

quality and

User Evaluation and Trust Assessment

Comprehensive user studies evaluated explanation
effectiveness with 47 participants including soil scientists
(n=18), agronomists (n=16), and land managers (n=13).
Participants evaluated model predictions with and without
explanations across multiple scenarios representing typical
decision-making contexts.

Trust assessment employed validated psychological scales
measuring cognitive trust, emotional trust, and behavioral
intentions. Decision confidence was measured through self-
reported certainty scores and decision time analysis.
Explanation  preference  surveys identified optimal
explanation formats and information content for different
user groups and application contexts.
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Computational Efficiency Analysis

Computational overhead for explanation generation was
measured across different methods and model types. Metrics
included explanation generation time, memory usage, and
scalability with dataset size and feature dimensionality.
Optimization  strategies were evaluated including
approximation methods, parallel processing, and caching
mechanisms to enable real-time explanation generation for
interactive applications.
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Results

Model Performance and XAl Method Comparison

All machine learning models achieved high predictive
accuracy, with R2 values ranging from 0.83-0.91 across soil
properties (Table 1). The Transformer model achieved
highest accuracy for most properties, while Random Forest
provided good performance with inherent interpretability.
XAl method evaluation revealed significant differences in

explanation quality across approaches.

Table 1: Model performance and XAl method comparison across soil properties

Model Tvpe Soil Organic Carbon Soil pH Clay Content Available Nitrogen
yp Rz | RMSE | Fidelity | R? |[RMSE | Fidelity | R? | RMSE | Fidelity | R? | RMSE | Fidelity
Random Forest
SHAP 0.87| 0.64 0.92 10.83] 0.35 0.89 |0.85| 3.2 0.90 |0.79] 15.2 0.88
LIME 0.87| 0.64 0.88 |0.83] 0.35 0.85 |0.85| 3.2 0.87 [0.79] 15.2 0.84
SSEF 0.87| 0.64 0.94 ]0.83] 0.35 0.91 |0.85] 3.2 0.89 |0.79] 15.2 0.87
XGBoost
SHAP 0.89| 0.59 0.93 |0.85] 0.33 0.90 |0.87| 3.0 0.91 |0.81] 145 0.89
LIME 0.89| 0.59 0.86 |0.85| 0.33 0.83 |0.87| 3.0 0.85 [0.81] 145 0.82
SSEF 0.89| 0.59 0.94 |0.85| 0.33 0.91 |0.87] 3.0 0.89 |0.81] 145 0.87
Neural Networks
SHAP 0.88| 0.61 0.90 |0.84] 0.34 0.87 |0.86] 3.1 0.88 [0.80| 14.8 0.86
LIME 0.88| 0.61 0.85 |0.84| 0.34 0.82 |0.86] 3.1 0.84 [0.80| 14.8 0.81
Integrated Gradients | 0.88| 0.61 0.89 |0.84] 0.34 0.86 |0.86] 3.1 0.87 |0.80| 14.8 0.85
SSEF 0.88] 0.61 0.92 |0.84] 0.34 0.89 |0.86] 3.1 0.87 |0.80| 14.8 0.85
Transformer
Attention Mechanisms | 0.91| 0.53 0.88 |0.87| 0.30 0.85 |0.89| 2.7 0.86 [0.83] 13.6 0.84
SHAP 0.91| 0.53 091 |0.87| 0.30 0.88 |0.89| 2.7 0.89 [0.83] 13.6 0.87
SSEF 0.91| 0.53 0.94 |0.87| 0.30 0.91 |0.89| 2.7 0.89 |0.83] 13.6 0.87

The SSEF approach consistently achieved highest fidelity
scores (0.87-0.94) across all model types, demonstrating
superior ability to accurately reflect model behavior. SHAP
provided robust performance across different algorithms,
while LIME showed higher variability in explanation quality.

Feature Importance Analysis and Consistency

Feature importance rankings showed high consistency across
different XAl methods (Table 2), with Spearman correlations
exceeding 0.85 for most comparisons. Climate variables,
particularly precipitation and temperature, emerged as
primary predictors across all soil properties. Topographic
variables including elevation and slope showed consistent

importance,
significantly to organic carbon predictions.

while

vegetation  indices

Table 2: Feature importance consistency across XAl methods and top-ranked predictors

Soil Property SHAP-LIME Correlation

SHAP-SSEF Correlation

Top 5 Predictors (SHAP Rankings)

Soil Organic Carbon 0.89

0.92

1. Mean Annual Precipitation (0.18)

2. Mean Annual Temperature (0.15)

3. Elevation (0.12)

4. NDVI Maximum (0.11)

5. Topographic Wetness Index (0.09)

Soil pH 0.87

0.90

1. Parent Material Type (0.16)

2. Precipitation Seasonality (0.14)

3. Elevation (0.13)

4. Slope (0.10)

5. Temperature Seasonality (0.09)

Clay Content 0.85

0.88

1. Geological Formation (0.17)

2. Mean Annual Precipitation (0.15)

3. Topographic Position Index (0.12)

4. Flow Accumulation (0.10)

5. Aspect (0.08)

Available Nitrogen 0.86

0.89

1. Land Use History (0.19)

2. NDVI Mean (0.16)

3. Temperature Annual Range (0.13)

4. Cultivation Duration (0.11)

5. Soil Organic Carbon (0.10)
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The high consistency in feature importance rankings across
methods provides confidence in the reliability of
explanations. Regional variations in predictor importance
reflected local environmental conditions, with coastal areas
showing higher importance for salinity-related variables and
mountainous regions emphasizing topographic factors.
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Non-linear Relationships and Interaction Effects

SHAP analysis revealed complex non-linear relationships
and interaction effects that were not apparent through
traditional statistical analysis (Table 3). Precipitation showed
threshold effects on organic carbon accumulation, with
maximum benefits occurring at 800-1200 mm annually.
Temperature exhibited optimal ranges for different soil
properties, with soil pH showing sensitivity to temperature
extremes.

Table 3: Key non-linear relationships and interaction effects identified through SHAP analysis

Soil Property Non-linear Relationship Interaction Effect Effect Magnitude
Precipitation threshold at 800-1200 mm Temperature x Precipitation AR?=0.08
Soil Organic Carbon Temperature optimum 12-18°C Elevation x Climate AR?=0.06
Elevation saturation >1500m NDVI x Management AR?=0.05
Precipitation inverse relationship Parent Material x Climate AR?=0.09
Soil pH Temperature extremes (<5°C, >25°C) Topography x Precipitation AR?*=0.07
Elevation buffering effect Geology x Weathering AR? = 0.04
Geological formation categorical Relief x Parent Material AR2=0.11
Clay Content Precipitation log-linear Climate x Topography AR?=0.08
Flow accumulation exponential Vegetation x Erosion AR? =0.06
Management history step function Land Use x Climate AR?=0.10
Available Nitrogen Vegetation phenology cyclical Organic Matter x Temperature AR?=0.07
Cultivation duration decay Soil Properties x Management AR?=0.05

These insights provide valuable scientific understanding that
extends beyond predictive modeling to process-based
knowledge of soil formation and management effects. The
identification of threshold effects and optimal ranges
supports evidence-based management recommendations.

User Evaluation and Trust Assessment

User  evaluation  studies  demonstrated  significant
improvements in model acceptance and decision-making
when XAl explanations were provided (Table 4). Trust scores
increased by 78% on average across user groups, with soil
scientists showing greatest improvement in cognitive trust
and land managers showing highest gains in behavioral
intentions.

Table 4: User evaluation results showing impact of XAl explanations on trust and decision-making

User Group Sample Size Cogn:;{::t Iénrr?(:t?gﬁzenéézg/ioral Decision Confidence (+%0) Adoption Intention (+%b)
Soil Scientists 18 85 68 72 71 89
Agronomists 16 74 61 67 62 78

Land Managers 13 72 59 89 58 85

Overall Average 47 78 64 74 65 82

Decision confidence improved by 65% on average, with
participants reporting greater certainty in recommendations
based on explained predictions. Adoption intentions
increased by 82%, indicating strong potential for practical
implementation of XAl-enhanced soil prediction systems.

Explanation preference surveys revealed user group
differences in optimal explanation formats. Soil scientists
preferred detailed feature importance rankings with
confidence intervals. Agronomists favored simplified visual
explanations focused on management-relevant variables.

Land managers emphasized spatial patterns and regional
comparisons.

Computational Efficiency and Scalability

Computational overhead analysis revealed manageable costs
for explanation generation across different methods (Table
5). SHAP explanation generation required 12-18% additional
computation time compared to prediction alone, while LIME
showed higher variability (8-25%) depending on perturbation
sample size.

Table 5: Computational efficiency analysis for XAl methods across different model types

XAl Method _ Random Forest _ XGBoost _ Neural Networks _ Transformer
Time (ms) | Overhead (%) | Time (ms) | Overhead (%) | Time (ms) | Overhead (%) | Time (ms) | Overhead (%0)

Baseline Prediction 2.3 - 1.8 - 4.6 - 7.2 -

SHAP 2.8 22 2.1 17 5.4 17 8.5 18

LIME 2.9 26 2.2 22 5.8 26 9.0 25

Integrated Gradients - - - - 5.2 13 8.1 13

Attention Mechanisms - - - - - - 7.4 3

SSEF 3.1 35 2.4 33 6.2 35 9.8 36
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The SSEF method showed highest computational overhead
(33-36%) due to additional pedological constraint checking,
but remained feasible for real-time applications. Attention
mechanisms provided the most efficient explanations for
transformer models with only 3% overhead.

Scalability analysis confirmed linear scaling with dataset size
for most methods, enabling application to large-scale soil
mapping projects. Parallel processing and caching strategies
reduced explanation generation time by 40-60% for batch
applications.

Regional Explanation Patterns

Analysis of explanation patterns across different regions
revealed systematic variations in predictor importance that
aligned with  known  soil-landscape  relationships.
Mediterranean regions showed higher importance for
drought-related  variables, while temperate regions
emphasized temperature seasonality effects.

Coastal areas demonstrated elevated importance for salinity
and proximity variables, while inland regions prioritized
continental climate factors. Mountainous terrain showed
complex interactions between elevation, aspect, and climate
variables that explained local soil property variations.

These regional patterns provide valuable insights for adaptive
sampling strategies and region-specific model development,
supporting more targeted soil mapping efforts.

Discussion

The superior performance of the Soil-Specific Explanation
Framework (SSEF) demonstrates the value of incorporating
domain knowledge into XAl approaches for scientific
applications. By organizing explanations according to soil
formation factors and enforcing pedological constraints, the
SSEF method provides explanations that are both
mathematically sound and scientifically meaningful. This
approach bridges the gap between statistical attribution and
process-based understanding that is crucial for soil science
applications.

The high consistency in feature importance rankings across
different XAl methods provides confidence in the reliability
and robustness of explanations. The identification of climate
and topographic variables as primary predictors aligns with
fundamental soil science principles, while the discovery of
complex non-linear relationships and interaction effects adds
new scientific insights that extend beyond traditional
statistical analysis.

The user evaluation results demonstrate clear benefits of
explainable Al for building trust and supporting decision-
making in soil science applications. The 78% improvement
in trust scores across user groups indicates that explanations
successfully address skepticism about "black box" Al
models. The increased decision confidence and adoption
intentions suggest that XAl can facilitate broader acceptance
of Al tools in agricultural and environmental management.
The computational efficiency analysis reveals that
explanation generation imposes manageable overhead for
most practical applications. The 12-18% increase in
computation time for SHAP explanations is reasonable for
the significant benefits in interpretability and user
acceptance. The development of efficient approximation
methods and caching strategies can further reduce
computational costs for operational deployment.

The identification of regional patterns in explanation
importance provides valuable insights for adaptive model
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development and sampling strategies. The systematic
variations in predictor importance across different
environmental conditions suggest that explanation analysis
can inform scientific understanding of soil-landscape
relationships and guide future research directions.

The discovery of threshold effects and optimal ranges for
environmental variables through SHAP analysis provides
actionable insights for soil management and agricultural
decision-making. These findings demonstrate that XAl can
contribute to scientific knowledge beyond simply explaining
existing models, offering new perspectives on complex
environmental relationships.

Conclusion

This comprehensive study establishes the effectiveness of
explainable Al approaches for enhancing interpretability in
soil prediction models while maintaining high predictive
accuracy. The Soil-Specific Explanation Framework
emerged as the optimal approach, achieving superior fidelity
scores (0.87-0.94) by incorporating pedological knowledge
into explanation generation.

The high consistency in feature importance rankings across
different XAl methods (Spearman correlations >0.85)
provides confidence in explanation reliability, while the
identification of complex non-linear relationships and
interaction effects adds scientific value beyond predictive
modeling. The systematic regional patterns in explanation
importance offer insights for adaptive model development
and targeted sampling strategies.

User  evaluation  results  demonstrate  significant
improvements in trust (78% increase), decision confidence
(65% increase), and adoption intentions (82% increase) when
explanations are provided, indicating strong potential for
practical implementation. The manageable computational
overhead (12-18% increase) makes real-time explanation
generation feasible for operational applications.

The study reveals that explainable Al can contribute to
scientific understanding by uncovering threshold effects,
optimal ranges, and complex interactions that inform soil
management and agricultural decision-making. The ability to
provide both statistical attribution and process-based
understanding makes XAl particularly valuable for scientific
applications where explanation quality is as important as
predictive accuracy.

Future research should focus on developing more
sophisticated domain-specific explanation frameworks,
integrating temporal dynamics into explanation analysis, and
exploring explanation-guided model improvement strategies.
The extension of XAl approaches to multi-modal data
sources and real-time monitoring applications could further
enhance their utility for operational soil mapping systems.
The findings provide a solid foundation for implementing
explainable Al in soil science applications, supporting the
transition from purely predictive models to interpretable
systems that combine accuracy with understanding and trust.
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