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Soil mapping is critical for precision agriculture, environmental monitoring, and land
management, but traditional methods are labor-intensive and limited in scale. This
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Published: 12-04-2025 index (TWI). The results demonstrate that Al-driven multimodal data fusion
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sustainable land use.
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Introduction

Soil mapping provides essential data for optimizing agricultural productivity, managing soil health, and mitigating
environmental degradation ™. Conventional soil mapping relies on field sampling and laboratory analysis, which are time-
consuming and spatially limited . Remote sensing technologies, including hyperspectral imagery, LIiDAR, and SAR, offer
high-resolution data for large-scale soil characterization . Hyperspectral imagery captures spectral reflectance across multiple
wavelengths, revealing soil chemical properties [. LiDAR provides topographic data critical for understanding soil distribution
51 while SAR penetrates surface layers to assess soil moisture and texture [,

Integrating these heterogeneous datasets poses challenges due to their differing spatial, temporal, and spectral resolutions 1. Al,
particularly deep learning models like Multimodal Transformers (MMT), can fuse multimodal data by learning complex
relationships across inputs . This study was conducted in a 500-hectare agricultural site in lowa, USA, with diverse soil types
(silty loam to clay). The objectives were to: (1) develop an MMT model to fuse hyperspectral, LIDAR, and SAR data; (2) predict
key soil properties (SOC, pH, clay content, N); and (3) evaluate feature importance through attention weight analysis. The
findings aim to advance precision agriculture and sustainable land management [,

Materials and Methods

Study Area

The study site is a 500-hectare agricultural field in Iowa, USA (42°05'N, 93°35'W), characterized by silty loam and clay soils,
with SOC ranging from 1-5%, pH from 5.5-7.5, and clay content from 20-40%. The site includes flat and gently sloping terrain,
ideal for testing multimodal data fusion [,
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Data Collection

Hyperspectral Data

Sentinel-2 multispectral imagery (10-60 m resolution) was
acquired in June 2023, providing 13 spectral bands, including
visible (Blue, Green, Red), near-infrared (NIR), and SWIR.
Bands were preprocessed for atmospheric correction using
Sen2Cor (14,

LiDAR Data

Airborne LIiDAR data (1 m resolution) was collected in May
2023, generating a digital elevation model (DEM).
Topographic metrics, including slope, topographic wetness

index (TWI), and elevation, were derived using ArcGIS Pro
[12],

SAR Data

Sentinel-1 SAR data (C-band, 10 m resolution) was acquired
in VV and VH polarizations during June 2023. Backscatter
coefficients were processed for soil moisture and texture
estimation using SNAP software [*3],

Experimental Design

The study area was divided into 100 plots (50 m x 50 m). Soil
samples (n=200) were collected at 0-20 cm depth and
analyzed for SOC, pH, clay content, and N using standard
laboratory methods (e.g., Walkley-Black for SOC, pH meter
for pH). These served as ground truth data for model training.

Al Model Development

A Multimodal Transformer (MMT) model was developed to

fuse hyperspectral, LIiDAR, and SAR data. The model

architecture included:

e Input Layers: Separate encoders for hyperspectral (13
bands), LIiDAR (3 topographic metrics), and SAR (2
polarizations).
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e Attention Mechanism: Cross-modal attention layers to
weigh feature importance across data types.

e Output Layer: Regression outputs for SOC, pH, clay
content, and N.

The model was trained on 70% of the data (140 samples)
using Adam optimizer, with 30% for validation.
Hyperparameters included a learning rate of 0.001 and 50
epochs.

Data Analysis

Model Performance

Model accuracy was evaluated using R? and root mean square
error (RMSE). Single-sensor models (hyperspectral-only,
LiDAR-only, SAR-only) were compared to the MMT model
to assess fusion benefits.

Attention Weight Analysis

Attention weights were extracted to quantify the contribution
of each feature (e.g., SWIR, TWI) to predictions. Weights
were normalized (0-1) and visualized to identify key
predictors.

Statistical Analysis

Analysis of variance (ANOVA) compared model predictions
across soil properties, with post-hoc Tukey tests for
significant differences (p<0.05).

Results

The MMT model significantly outperformed single-sensor
models. Table 1 summarizes model performance for soil
property predictions.

Table 1: Model Performance for Soil Property Predictions

Soil Property MMT R2 | MMT RMSE | Hyperspectral R? | LIDAR R? | SAR R?

SOC (%) 0.92 0.15 0.78 0.65 0.60

pH 0.87 0.20 0.72 0.58 0.55

Clay (%) 0.85 2.50 0.70 0.62 0.58

Nitrogen (mg/kg) | 0.88 10.0 0.75 0.60 0.57
1.0
0.9
; u.a
0.4
0.1

S0C (% pH Clay (% Nitrogen (mg/kg)

Soil Properties
MMT Model Hyperspectral-Only LiDAR-Only SAR-Only

Fig 1: Performance comparison of MMT vs Single-Sensor (R?)

27|Page



Journal of Soil Future Research

www.soilfuturejournal.com

Attention weight analysis revealed key predictors. Table 2 shows normalized attention weights for selected features.

Table 2: Attention Weights for Soil Property Predictions

Soil Property Feature Type | Feature | Attention Weight

soC Spectral Band | SWIR1 0.95

Topographic TWI 0.90

oH Spectral Band Blue 0.92

Topographic Aspect 0.88

Clay Spectral Band | SWIR2 0.94

Topographic TWI 0.91

Nitrogen Spectral Band NIR 0.93
Topographic Flow 0.89

The MMT model reduced prediction errors by 15-20% 3. Mulder VL, de Bruin S, Schaepman ME, Mayr TR. The

compared to single-sensor models. ANOVA confirmed
significant improvements (p<0.01) in R2? for all soil
properties. Attention weights highlighted SWIR1 and TWI as
dominant predictors for SOC, while Blue and Aspect were
critical for pH.

Discussion

The Al-driven fusion of hyperspectral, LIDAR, and SAR data
significantly enhanced soil mapping accuracy. The MMT
model’s high R? (0.92 for SOC, 0.87 for pH) reflects its
ability to capture complex interactions between spectral and
topographic features. SWIR bands were critical for SOC and
clay predictions due to their sensitivity to organic matter and
mineral content. TWI and Aspect influenced predictions by
accounting for soil moisture and microclimate variations.
Compared to previous studies, the MMT model outperformed
hyperspectral-only models (R? = 0.78 for SOC) reported by
Lausch et al. The inclusion of LIiDAR and SAR data
improved spatial resolution and robustness, particularly in
heterogeneous terrains. Challenges include computational
complexity and the need for high-quality, synchronized
datasets. Future research could explore generative Al for data
augmentation or hybrid models combining MMT with
convolutional neural networks.

The findings have implications for precision agriculture,
enabling targeted fertilizer application and soil conservation
strategies. Scalability to larger regions depends on access to
open-source data (e.g., Sentinel-1/2) and cloud-based Al
platforms.

Conclusion

This study demonstrates the efficacy of Al-driven
multimodal data fusion for soil mapping. The MMT maodel,
integrating hyperspectral, LiDAR, and SAR data, achieved
high accuracy (R2? up to 0.92) in predicting SOC, pH, clay
content, and nitrogen. Attention weight analysis identified
SWIR bands and TWI as key predictors, underscoring the
value of multimodal inputs. These results highlight the
potential of Al to revolutionize soil mapping, offering
scalable, cost-effective solutions for precision agriculture and
environmental management. Future work should focus on
optimizing model efficiency and expanding applications to
diverse soil types and regions.
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