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Abstract 
Soil mapping is critical for precision agriculture, environmental monitoring, and land 
management, but traditional methods are labor-intensive and limited in scale. This 
study explores the integration of hyperspectral, Light Detection and Ranging 
(LiDAR), and Synthetic Aperture Radar (SAR) data using artificial intelligence (AI) 
to enhance soil mapping accuracy in a 500-hectare agricultural site in Iowa, USA. A 
Multimodal Transformer (MMT) model was employed to fuse data from Sentinel-2 
hyperspectral imagery, LiDAR-derived topographic metrics, and Sentinel-1 SAR data, 
predicting soil properties such as organic carbon (SOC), pH, clay content, and 
available nitrogen (N). The model achieved an R² of 0.92 for SOC and 0.87 for pH, 
outperforming single-sensor models by 15–20%. Attention weight analysis revealed 
key contributions from Short-Wave Infrared (SWIR) bands and topographic wetness 
index (TWI). The results demonstrate that AI-driven multimodal data fusion 
significantly improves soil mapping precision, offering scalable solutions for 
sustainable land use. 
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Introduction 

Soil mapping provides essential data for optimizing agricultural productivity, managing soil health, and mitigating 

environmental degradation [1]. Conventional soil mapping relies on field sampling and laboratory analysis, which are time-

consuming and spatially limited [2]. Remote sensing technologies, including hyperspectral imagery, LiDAR, and SAR, offer 

high-resolution data for large-scale soil characterization [3]. Hyperspectral imagery captures spectral reflectance across multiple 

wavelengths, revealing soil chemical properties [4]. LiDAR provides topographic data critical for understanding soil distribution 
[5], while SAR penetrates surface layers to assess soil moisture and texture [6]. 

Integrating these heterogeneous datasets poses challenges due to their differing spatial, temporal, and spectral resolutions [7]. AI, 

particularly deep learning models like Multimodal Transformers (MMT), can fuse multimodal data by learning complex 

relationships across inputs [8]. This study was conducted in a 500-hectare agricultural site in Iowa, USA, with diverse soil types 

(silty loam to clay). The objectives were to: (1) develop an MMT model to fuse hyperspectral, LiDAR, and SAR data; (2) predict 

key soil properties (SOC, pH, clay content, N); and (3) evaluate feature importance through attention weight analysis. The 

findings aim to advance precision agriculture and sustainable land management [9]. 

 

Materials and Methods 

Study Area 

The study site is a 500-hectare agricultural field in Iowa, USA (42°05′N, 93°35′W), characterized by silty loam and clay soils, 

with SOC ranging from 1–5%, pH from 5.5–7.5, and clay content from 20–40%. The site includes flat and gently sloping terrain, 

ideal for testing multimodal data fusion [10]. 
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Data Collection 

Hyperspectral Data 

Sentinel-2 multispectral imagery (10–60 m resolution) was 

acquired in June 2023, providing 13 spectral bands, including 

visible (Blue, Green, Red), near-infrared (NIR), and SWIR. 

Bands were preprocessed for atmospheric correction using 

Sen2Cor [11]. 

 

LiDAR Data 

Airborne LiDAR data (1 m resolution) was collected in May 

2023, generating a digital elevation model (DEM). 

Topographic metrics, including slope, topographic wetness 

index (TWI), and elevation, were derived using ArcGIS Pro 
[12]. 

 

SAR Data 

Sentinel-1 SAR data (C-band, 10 m resolution) was acquired 

in VV and VH polarizations during June 2023. Backscatter 

coefficients were processed for soil moisture and texture 

estimation using SNAP software [13]. 

 

Experimental Design 

The study area was divided into 100 plots (50 m × 50 m). Soil 

samples (n=200) were collected at 0–20 cm depth and 

analyzed for SOC, pH, clay content, and N using standard 

laboratory methods (e.g., Walkley-Black for SOC, pH meter 

for pH). These served as ground truth data for model training. 

 

AI Model Development 

A Multimodal Transformer (MMT) model was developed to 

fuse hyperspectral, LiDAR, and SAR data. The model 

architecture included: 

• Input Layers: Separate encoders for hyperspectral (13 

bands), LiDAR (3 topographic metrics), and SAR (2 

polarizations). 

• Attention Mechanism: Cross-modal attention layers to 

weigh feature importance across data types. 

• Output Layer: Regression outputs for SOC, pH, clay 

content, and N. 

 

The model was trained on 70% of the data (140 samples) 

using Adam optimizer, with 30% for validation. 

Hyperparameters included a learning rate of 0.001 and 50 

epochs. 

 

Data Analysis 

Model Performance 

Model accuracy was evaluated using R² and root mean square 

error (RMSE). Single-sensor models (hyperspectral-only, 

LiDAR-only, SAR-only) were compared to the MMT model 

to assess fusion benefits. 

 

Attention Weight Analysis 

Attention weights were extracted to quantify the contribution 

of each feature (e.g., SWIR, TWI) to predictions. Weights 

were normalized (0–1) and visualized to identify key 

predictors. 

 

Statistical Analysis 

Analysis of variance (ANOVA) compared model predictions 

across soil properties, with post-hoc Tukey tests for 

significant differences (p<0.05). 

 

Results 

The MMT model significantly outperformed single-sensor 

models. Table 1 summarizes model performance for soil 

property predictions. 

 

Table 1: Model Performance for Soil Property Predictions 
 

Soil Property MMT R² MMT RMSE Hyperspectral R² LiDAR R² SAR R² 

SOC (%) 0.92 0.15 0.78 0.65 0.60 

pH 0.87 0.20 0.72 0.58 0.55 

Clay (%) 0.85 2.50 0.70 0.62 0.58 

Nitrogen (mg/kg) 0.88 10.0 0.75 0.60 0.57 

 

 
 

Fig 1: Performance comparison of MMT vs Single-Sensor (R2) 

 

 

 

 



Journal of Soil Future Research www.soilfuturejournal.com  

 
    28 | P a g e  

 

Attention weight analysis revealed key predictors. Table 2 shows normalized attention weights for selected features. 
 

Table 2: Attention Weights for Soil Property Predictions 
 

Soil Property Feature Type Feature Attention Weight 

SOC 
Spectral Band SWIR1 0.95 

Topographic TWI 0.90 

pH 
Spectral Band Blue 0.92 

Topographic Aspect 0.88 

Clay 
Spectral Band SWIR2 0.94 

Topographic TWI 0.91 

Nitrogen 
Spectral Band NIR 0.93 

Topographic Flow 0.89 

The MMT model reduced prediction errors by 15–20% 

compared to single-sensor models. ANOVA confirmed 

significant improvements (p<0.01) in R² for all soil 

properties. Attention weights highlighted SWIR1 and TWI as 

dominant predictors for SOC, while Blue and Aspect were 

critical for pH. 

 

Discussion 

The AI-driven fusion of hyperspectral, LiDAR, and SAR data 

significantly enhanced soil mapping accuracy. The MMT 

model’s high R² (0.92 for SOC, 0.87 for pH) reflects its 

ability to capture complex interactions between spectral and 

topographic features. SWIR bands were critical for SOC and 

clay predictions due to their sensitivity to organic matter and 

mineral content. TWI and Aspect influenced predictions by 

accounting for soil moisture and microclimate variations. 

Compared to previous studies, the MMT model outperformed 

hyperspectral-only models (R² = 0.78 for SOC) reported by 

Lausch et al. The inclusion of LiDAR and SAR data 

improved spatial resolution and robustness, particularly in 

heterogeneous terrains. Challenges include computational 

complexity and the need for high-quality, synchronized 

datasets. Future research could explore generative AI for data 

augmentation or hybrid models combining MMT with 

convolutional neural networks. 

The findings have implications for precision agriculture, 

enabling targeted fertilizer application and soil conservation 

strategies. Scalability to larger regions depends on access to 

open-source data (e.g., Sentinel-1/2) and cloud-based AI 

platforms. 

 

Conclusion 

This study demonstrates the efficacy of AI-driven 

multimodal data fusion for soil mapping. The MMT model, 

integrating hyperspectral, LiDAR, and SAR data, achieved 

high accuracy (R² up to 0.92) in predicting SOC, pH, clay 

content, and nitrogen. Attention weight analysis identified 

SWIR bands and TWI as key predictors, underscoring the 

value of multimodal inputs. These results highlight the 

potential of AI to revolutionize soil mapping, offering 

scalable, cost-effective solutions for precision agriculture and 

environmental management. Future work should focus on 

optimizing model efficiency and expanding applications to 

diverse soil types and regions. 
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