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Avrticle Info Abstract , . . :
Soil health is fundamental to sustainable agriculture and ecosystem resilience, with

microbial communities playing a pivotal role in nutrient cycling, organic matter
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Introduction

Soil health, defined by its capacity to sustain biological productivity, environmental quality, and ecosystem services, is
increasingly recognized as critical for global food security and climate resilience M. Microbial communities drive key soil
processes, including nutrient cycling, carbon sequestration, and aggregate formation, which underpin soil health 2. Microbial
co-occurrence networks, which model interactions among microbial taxa, provide insights into community structure and
ecological function 1. Complex networks with high connectivity often indicate robust ecosystems, while sparse networks may
reflect stressed or degraded soils I,

This study was conducted in a 200-hectare agricultural landscape in Saskatchewan, Canada, characterized by diverse soil types
(loam to clay loam) and management practices (conventional and organic). The objectives were to: (1) characterize microbial
co-occurrence networks using 16S rRNA and ITS sequencing; (2) correlate network metrics with soil health indices (SOC, pH,
aggregate stability, nitrogen); and (3) develop predictive models linking microbial interactions to soil health. The findings aim
to guide microbial-based strategies for enhancing soil health in agricultural systems [,

Materials and Methods

Study Area

The study site is a 200-hectare agricultural landscape near Saskatoon, Saskatchewan, Canada (52°08'N, 106°38'W). Soils are
predominantly loam to clay loam, with SOC ranging from 2-6%, pH from 6.0-7.8, and mean weight diameter (MWD) from
1.0-4.5 mm. The site includes both conventional (synthetic fertilizers, pesticides) and organic (compost, cover crops)
management practices [61.
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Soil Sampling and Analysis

A total of 120 soil samples were collected at 0-15 cm depth

in July 2024, representing a grid of 40 plots (50 m x 50 m).

Samples were analyzed for:

e SOC: Walkley-Black method 1.

e pH: 1:2 soil-water slurry with a pH meter [,

e Aggregate Stability: Mean weight diameter (MWD) via
wet sieving [,

e Available Nitrogen: Kjeldahl method [,

Microbial Community Analysis

DNA was extracted from 0.5 g soil samples using the DNeasy
Power Soil Kit (Qiagen). Bacterial 16S rRNA (V3-V4
region) and fungal ITS regions were amplified and sequenced
using Illumina MiSeq M. Sequences were processed with
QIIME2, clustered into operational taxonomic units (OTUs)
at 97% similarity, and taxonomically assigned using the
SILVA (bacteria) and UNITE (fungi) databases 121,

Network Analysis

Microbial co-occurrence networks were constructed using
Spearman correlation coefficients (p > 0.6, p < 0.05) between
OTUs. Networks were visualized using Gephi, with metrics
including:

e Node Degree: Number of connections per taxon.

www.soilfuturejournal.com
e Clustering Coefficient: taxon
interconnectedness.
e Modularity: Community structure within the network.

Degree  of

Keystone taxa were identified based on high degree and
betweenness centrality (%1,

Predictive Modeling

Random Forest (RF) models were developed to predict soil
health indices from network metrics (node degree, clustering
coefficient, modularity) and microbial diversity (Shannon
index). Models were trained on 70% of the data (84 samples)
and validated on 30% (36 samples), using 100 trees and a
maximum depth of 10.

Statistical Analysis
Analysis of variance (ANOVA) compared network metrics
and soil health indices across management practices. Post-

hoc Tukey tests identified significant differences (p < 0.05)
[14],

Results

Microbial co-occurrence networks varied significantly with
soil health. Table 1 summarizes key network metrics and soil
health indices across management practices I,

Table 1: Microbial Network Metrics and Soil Health Indices

Management | Node Degree | Clustering Coefficient [SOC (%)| pH MWD (mm) | Nitrogen (mg/kg)
Conventional | 125+2.1 0.45 £ 0.08 28+046.2+03] 15+0.2 120+ 15
Organic 18.7+3.0 0.62 +0.10 45+06|7.0+0.2| 3.8%x04 180 + 20
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Fig 1: Microbial Network Metrics and Soil Health Indices by Management Practice

Organic soils exhibited denser networks (higher node degree,
clustering coefficient) and better soil health (higher SOC €],
MWD). Keystone taxa included Bacillus (bacteria) and

Mortierella (fungi) in organic soils, with Pseudomonas
dominant in conventional soils (19251,

RF models accurately predicted soil health indices. Table 2
shows model performance.

Table 2: Random Forest Model Performance for Soil Health Indices

Soil Property

SOC (%)

pH

MWD (mm)

Nitrogen (mg/kg)

R2 RMSE
0.88 0.22
0.85 0.18
0.90 0.25
0.87 12.5
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Fig 2: Random Forest Model Performance for Soil Health Indices

Network metrics, particularly node degree and clustering
coefficient, were the strongest predictors, contributing 40—
50% to model variance. ANOVA confirmed significant
differences (p < 0.01) in network density between organic
and conventional soils 21,

Discussion

The results highlight a strong linkage between microbial co-
occurrence networks and soil health. Organic soils, with
higher SOC and MWD, supported denser microbial
networks, likely due to increased carbon inputs from compost
and cover crops. Keystone taxa like Bacillus and Mortierella
enhance soil aggregation and nutrient cycling 28, as their
high connectivity suggests facilitative interactions. In
contrast, conventional soils showed sparser networks,
dominated by stress-tolerant taxa like Pseudomonas,
reflecting reduced microbial diversity under synthetic inputs
[29]

The RF models’ high R? (0.88-0.90) indicates that network
metrics are robust predictors of soil health, outperforming
traditional diversity indices (e.g., Shannon index, R? = 0.75).
This aligns with findings by Banerjee et al., who reported
network complexity as a key indicator of soil ecosystem
stability. Challenges include the computational intensity of
network analysis and the need for standardized thresholds in
co-occurrence modeling. Future research could integrate
metagenomic data to explore functional genes or use machine
learning to predict soil health in real-time [,

These findings have practical implications for agriculture.
Enhancing microbial network complexity through organic
practices could improve soil health, reducing reliance on
chemical inputs. Scaling this approach requires accessible
sequencing technologies and farmer training in microbial
management.

Conclusion

This study demonstrates that microbial co-occurrence
networks are strongly linked to soil health indices, with
denser networks in organic soils correlating with higher SOC,
pH, MWD, and nitrogen. RF models effectively predicted
soil health from network metrics, achieving R? values up to
0.90. Keystone taxa like Bacillus and Mortierella were
critical in organic systems, underscoring their role in soil

ecosystem function. These findings advocate for microbial-
based soil management strategies to enhance agricultural
sustainability. Future work should focus on functional gene
analysis and real-time monitoring to operationalize these
insights.
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