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Abstract 
Soil health is fundamental to sustainable agriculture and ecosystem resilience, with 
microbial communities playing a pivotal role in nutrient cycling, organic matter 
decomposition, and soil structure maintenance. This study investigates the relationship 
between microbial co-occurrence networks and soil health indices in a 200-hectare 
agricultural landscape in Saskatchewan, Canada. Using high-throughput 16S rRNA 
sequencing, we characterized bacterial and fungal communities across 120 soil 
samples. Network analysis revealed that soils with higher soil health indices (e.g., soil 
organic carbon [SOC], aggregate stability) exhibited denser microbial networks with 
keystone taxa such as Bacillus and Mortierella. Random Forest models linked network 
metrics (e.g., node degree, clustering coefficient) to soil health indices, achieving an 
R² of 0.88 for SOC prediction. Key findings show that microbial network complexity 
correlates positively with soil health, offering insights for microbial-based soil 
management strategies. 
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Introduction 

Soil health, defined by its capacity to sustain biological productivity, environmental quality, and ecosystem services, is 

increasingly recognized as critical for global food security and climate resilience [1]. Microbial communities drive key soil 

processes, including nutrient cycling, carbon sequestration, and aggregate formation, which underpin soil health [2]. Microbial 

co-occurrence networks, which model interactions among microbial taxa, provide insights into community structure and 

ecological function [3]. Complex networks with high connectivity often indicate robust ecosystems, while sparse networks may 

reflect stressed or degraded soils [4]. 

This study was conducted in a 200-hectare agricultural landscape in Saskatchewan, Canada, characterized by diverse soil types 

(loam to clay loam) and management practices (conventional and organic). The objectives were to: (1) characterize microbial 

co-occurrence networks using 16S rRNA and ITS sequencing; (2) correlate network metrics with soil health indices (SOC, pH, 

aggregate stability, nitrogen); and (3) develop predictive models linking microbial interactions to soil health. The findings aim 

to guide microbial-based strategies for enhancing soil health in agricultural systems [5]. 

 

Materials and Methods 

Study Area 

The study site is a 200-hectare agricultural landscape near Saskatoon, Saskatchewan, Canada (52°08′N, 106°38′W). Soils are 

predominantly loam to clay loam, with SOC ranging from 2–6%, pH from 6.0–7.8, and mean weight diameter (MWD) from 

1.0–4.5 mm. The site includes both conventional (synthetic fertilizers, pesticides) and organic (compost, cover crops) 

management practices [6]. 
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Soil Sampling and Analysis 

A total of 120 soil samples were collected at 0–15 cm depth 

in July 2024, representing a grid of 40 plots (50 m × 50 m). 

Samples were analyzed for: 

• SOC: Walkley-Black method [7]. 

• pH: 1:2 soil-water slurry with a pH meter [8]. 

• Aggregate Stability: Mean weight diameter (MWD) via 

wet sieving [9]. 

• Available Nitrogen: Kjeldahl method [10]. 

 

Microbial Community Analysis 

DNA was extracted from 0.5 g soil samples using the DNeasy 

Power Soil Kit (Qiagen). Bacterial 16S rRNA (V3-V4 

region) and fungal ITS regions were amplified and sequenced 

using Illumina MiSeq [11]. Sequences were processed with 

QIIME2, clustered into operational taxonomic units (OTUs) 

at 97% similarity, and taxonomically assigned using the 

SILVA (bacteria) and UNITE (fungi) databases [12]. 

 

Network Analysis 

Microbial co-occurrence networks were constructed using 

Spearman correlation coefficients (ρ > 0.6, p < 0.05) between 

OTUs. Networks were visualized using Gephi, with metrics 

including: 

• Node Degree: Number of connections per taxon. 

• Clustering Coefficient: Degree of taxon 

interconnectedness. 

• Modularity: Community structure within the network. 

 

Keystone taxa were identified based on high degree and 

betweenness centrality [13]. 

 

Predictive Modeling 

Random Forest (RF) models were developed to predict soil 

health indices from network metrics (node degree, clustering 

coefficient, modularity) and microbial diversity (Shannon 

index). Models were trained on 70% of the data (84 samples) 

and validated on 30% (36 samples), using 100 trees and a 

maximum depth of 10. 

 

Statistical Analysis 

Analysis of variance (ANOVA) compared network metrics 

and soil health indices across management practices. Post-

hoc Tukey tests identified significant differences (p < 0.05) 
[14]. 

 

Results 

Microbial co-occurrence networks varied significantly with 

soil health. Table 1 summarizes key network metrics and soil 

health indices across management practices [15]. 

 

Table 1: Microbial Network Metrics and Soil Health Indices 
 

Management Node Degree Clustering Coefficient SOC (%) pH MWD (mm) Nitrogen (mg/kg) 

Conventional 12.5 ± 2.1 0.45 ± 0.08 2.8 ± 0.4 6.2 ± 0.3 1.5 ± 0.2 120 ± 15 

Organic 18.7 ± 3.0 0.62 ± 0.10 4.5 ± 0.6 7.0 ± 0.2 3.8 ± 0.4 180 ± 20 

 

 
 

Fig 1: Microbial Network Metrics and Soil Health Indices by Management Practice 

 

Organic soils exhibited denser networks (higher node degree, 

clustering coefficient) and better soil health (higher SOC [18], 

MWD). Keystone taxa included Bacillus (bacteria) and 

Mortierella (fungi) in organic soils, with Pseudomonas 

dominant in conventional soils [19-25]. 

RF models accurately predicted soil health indices. Table 2 

shows model performance. 
 

Table 2: Random Forest Model Performance for Soil Health Indices 
 

Soil Property R² RMSE 

SOC (%) 0.88 0.22 

pH 0.85 0.18 

MWD (mm) 0.90 0.25 

Nitrogen (mg/kg) 0.87 12.5 
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Fig 2: Random Forest Model Performance for Soil Health Indices 

 

Network metrics, particularly node degree and clustering 

coefficient, were the strongest predictors, contributing 40–

50% to model variance. ANOVA confirmed significant 

differences (p < 0.01) in network density between organic 

and conventional soils [26]. 

 

Discussion 

The results highlight a strong linkage between microbial co-

occurrence networks and soil health. Organic soils, with 

higher SOC and MWD, supported denser microbial 

networks, likely due to increased carbon inputs from compost 

and cover crops. Keystone taxa like Bacillus and Mortierella 

enhance soil aggregation and nutrient cycling [28], as their 

high connectivity suggests facilitative interactions. In 

contrast, conventional soils showed sparser networks, 

dominated by stress-tolerant taxa like Pseudomonas, 

reflecting reduced microbial diversity under synthetic inputs 
[29]. 

The RF models’ high R² (0.88–0.90) indicates that network 

metrics are robust predictors of soil health, outperforming 

traditional diversity indices (e.g., Shannon index, R² = 0.75). 

This aligns with findings by Banerjee et al., who reported 

network complexity as a key indicator of soil ecosystem 

stability. Challenges include the computational intensity of 

network analysis and the need for standardized thresholds in 

co-occurrence modeling. Future research could integrate 

metagenomic data to explore functional genes or use machine 

learning to predict soil health in real-time [30]. 

These findings have practical implications for agriculture. 

Enhancing microbial network complexity through organic 

practices could improve soil health, reducing reliance on 

chemical inputs. Scaling this approach requires accessible 

sequencing technologies and farmer training in microbial 

management. 

 

Conclusion 

This study demonstrates that microbial co-occurrence 

networks are strongly linked to soil health indices, with 

denser networks in organic soils correlating with higher SOC, 

pH, MWD, and nitrogen. RF models effectively predicted 

soil health from network metrics, achieving R² values up to 

0.90. Keystone taxa like Bacillus and Mortierella were 

critical in organic systems, underscoring their role in soil 

ecosystem function. These findings advocate for microbial-

based soil management strategies to enhance agricultural 

sustainability. Future work should focus on functional gene 

analysis and real-time monitoring to operationalize these 

insights. 
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