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Abstract 
Soil carbon represents the largest terrestrial carbon pool, containing approximately 
1,550 Pg of carbon globally. Extreme weather events, including droughts, floods, 
heatwaves, and intense precipitation events, are becoming increasingly frequent and 
severe due to anthropogenic climate change. These events significantly alter soil 
carbon dynamics through multiple mechanisms including changes in microbial 
activity, root respiration, soil aggregation, and organic matter decomposition rates. 
This paper synthesizes current understanding of how extreme weather events affect 
soil carbon fluxes, examines the underlying biogeochemical mechanisms, and 
discusses implications for global carbon cycling and climate change mitigation 
strategies. Evidence suggests that extreme events generally promote carbon losses 
from soils through enhanced decomposition and reduced carbon inputs, potentially 
creating positive feedback loops that accelerate climate change. Understanding these 
dynamics is crucial for developing effective soil carbon management strategies and 
improving Earth system models used for climate projections. 
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Introduction 

Soil organic carbon (SOC) represents approximately 69% of all terrestrial carbon, making it the largest carbon reservoir in the 

biosphere after oceanic carbon [1]. The global soil carbon pool contains an estimated 1,550 Pg of carbon in the upper meter of 

soil, which is more than twice the amount of carbon in the atmosphere and three times that in vegetation [2]. This massive carbon 

reservoir plays a critical role in regulating atmospheric CO₂ concentrations and global climate patterns. 

The stability of soil carbon has traditionally been viewed through the lens of gradual, predictable processes controlled by 

temperature, moisture, and substrate availability. However, the increasing frequency and intensity of extreme weather events 

due to anthropogenic climate change is challenging this paradigm [3]. Extreme events, defined as weather phenomena that deviate 

significantly from normal conditions, can rapidly alter soil carbon dynamics through multiple pathways including direct physical 

disruption, altered microbial communities, and changes in plant-soil interactions. 

Recent studies have documented significant soil carbon losses following drought events in California [4], enhanced 

decomposition rates during European heatwaves [5], and altered carbon cycling patterns after severe flooding events [6]. These 

observations highlight the urgent need to understand how extreme weather events affect soil carbon fluxes and incorporate these 

processes into climate models and carbon management strategies. 

The objectives of this review are to: (1) examine the mechanisms by which extreme weather events influence soil carbon 

dynamics, (2) quantify the magnitude of carbon flux changes under different extreme conditions, (3) assess the implications for 

global carbon cycling, and (4) discuss strategies for managing soil carbon under increasing climate variability. 
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Soil Carbon Dynamics Under Normal Conditions 

Soil Carbon Pools and Processes 

Soil organic carbon exists in multiple pools with varying 

residence times and chemical compositions. The conceptual 

framework commonly divides SOC into three main pools: 

active (residence time: months to years), slow (decades), and 

passive (centuries to millennia) [7]. These pools interact 

through complex biogeochemical processes including 

decomposition, humification, and mineral-organic matter 

associations. 

Under normal conditions, soil carbon dynamics are governed 

by the balance between carbon inputs from plant litter and 

rhizodeposition, and carbon outputs through heterotrophic 

respiration and dissolved organic carbon leaching [8]. 

Temperature and moisture are the primary environmental 

controls, with optimal conditions typically occurring at 

moderate temperatures (15-25°C) and intermediate moisture 

levels (40-60% water-filled pore space) [9]. 

Microbial Communities and Carbon Processing 

Soil microbial communities are the primary agents of organic 

matter decomposition, with bacteria and fungi playing 

distinct roles in carbon cycling. Bacteria typically dominate 

in nutrient-rich environments and process labile organic 

compounds, while fungi are more efficient at decomposing 

recalcitrant materials like lignin and cellulose [10]. The 

composition and activity of these communities directly 

influence soil carbon stability and turnover rates. 

 

Extreme Weather Events and Soil Carbon 

Drought Events 

Drought represents one of the most significant extreme 

weather events affecting soil carbon dynamics. During 

drought conditions, soil moisture levels drop below critical 

thresholds, leading to multiple cascading effects on carbon 

cycling processes. 

 
Table 1: Soil carbon responses to drought events 

 

Duration Soil C Response Mechanism Reference 

Short-term (days-weeks) Reduced respiration Decreased microbial activity [11] 

Medium-term (months) Initial C accumulation Reduced decomposition [12] 

Long-term (years) Net C loss Plant mortality, reduced inputs [13] 

Post-drought Pulse C release Rewetting, microbial activation [14] 

 

The immediate response to drought typically involves a 

reduction in soil respiration rates due to decreased microbial 

activity and limited substrate diffusion in dry soils [11]. 

However, this apparent carbon conservation is often 

temporary, as drought stress leads to reduced plant 

productivity and carbon inputs through decreased 

photosynthesis and root exudation [15]. 

Prolonged drought events can trigger significant vegetation 

mortality, resulting in substantial reductions in carbon inputs 

while simultaneously increasing the pool of dead organic 

matter available for decomposition [16]. When drought 

conditions are alleviated, the rewetting of soils often leads to 

rapid pulses of CO₂ release, known as the "Birch effect," 

which can result in net carbon losses exceeding the temporary 

accumulation during drought [17]. 

 

Extreme Precipitation and Flooding 

Intense precipitation events and flooding create waterlogged 

conditions that fundamentally alter soil redox chemistry and 

microbial processes. Under anaerobic conditions, 

decomposition rates typically decrease due to the lower 

energy yield of anaerobic respiration compared to aerobic 

processes [18]. 

However, flooding events can also promote carbon losses 

through several mechanisms: (1) Physical erosion - High 

water flows can physically remove topsoil and associated 

organic matter [19]; (2) Dissolved organic carbon leaching - 

Saturated conditions enhance the mobility and export of 

dissolved organic compounds [20]; and (3) Methane 

production - Anaerobic conditions promote methanogenesis, 

converting stored carbon to methane, a potent greenhouse gas 
[21]. 

 

 
 

Fig 1: Conceptual model of soil carbon responses to extreme 

precipitation events 
 

Heatwaves and Temperature Extremes 

Extreme temperature events can dramatically accelerate soil 

carbon losses through enhanced decomposition rates. The 

relationship between temperature and decomposition follows 

an exponential function, meaning that even small increases in 

temperature can lead to disproportionately large increases in 

carbon losses [22]. 

During the European heatwave of 2003, soil carbon losses 

were estimated at 0.5 Pg C across the affected regions, 

equivalent to approximately four years of ecosystem carbon 

accumulation [5]. These losses were attributed to: (1) 

Enhanced enzyme activity - Higher temperatures increase the 

catalytic efficiency of decomposer enzymes [23]; (2) Altered 

microbial communities - Heat stress can shift microbial  
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community composition toward more thermotolerant species 

with different carbon processing capabilities [24]; and (3) 

Increased substrate accessibility - Thermal expansion and 

contraction can physically disrupt soil aggregates, exposing 

previously protected organic matter [25]. 

 

Compound Extreme Events 

Real-world extreme events often involve multiple stressors 

acting simultaneously or in sequence. For example, drought 

followed by intense precipitation, or heatwaves combined 

with drought conditions. These compound events can have 

synergistic effects on soil carbon that exceed the sum of 

individual impacts [26]. 

 
Table 2: Estimated global soil carbon flux changes under extreme events 

 

Event Type Flux Change (Pg C yr⁻¹) Confidence Level Time Scale 

Drought -0.8 to +0.3 Medium Seasonal 

Extreme precipitation -0.2 to -0.6 Low Event-based 

Heatwaves -0.1 to -0.4 High Seasonal 

Compound events -1.2 to -0.8 Low Multi-annual 

Note: Negative values indicate carbon losses from soil to atmosphere 
 

Mechanisms of Carbon Flux Changes 

Physical Mechanisms 

Physical processes play a crucial role in mediating soil carbon 

responses to extreme events. Freeze-thaw cycles, wetting-

drying cycles, and thermal expansion can all influence soil 

structure and aggregate stability [27]. The disruption of soil 

aggregates exposes previously protected organic matter to 

microbial attack, leading to accelerated decomposition rates. 

Extreme precipitation events can cause physical erosion and 

transport of soil organic matter, particularly in sloped 

landscapes. The selectivity of erosion processes often results 

in the preferential removal of carbon-rich fine particles, 

leading to disproportionate carbon losses relative to total soil 

mass [28]. 

 

Chemical Mechanisms 

Chemical processes governing soil carbon stability are highly 

sensitive to environmental conditions. Changes in soil pH, 

redox potential, and ionic strength during extreme events can 

alter the formation and stability of organo-mineral complexes 
[29]. Under flooding conditions, the reduction of Fe³⁺ and Mn⁴⁺ 

oxides can release previously stabilized organic matter, 

making it available for decomposition once aerobic 

conditions return [30]. Conversely, the formation of new 

mineral-organic associations during recovery periods can 

promote carbon stabilization. 

 

Biological Mechanisms 

Microbial communities exhibit complex responses to 

extreme events, with implications for carbon cycling 

extending well beyond the duration of the events themselves. 

Stress-induced changes in community composition can 

persist for months to years, altering the long-term trajectory 

of soil carbon dynamics [31]. 

Plant responses to extreme events also significantly influence 

soil carbon through changes in root exudation patterns, litter 

quality and quantity, and mycorrhizal associations. The 

coupling between above- and below-ground processes means 

that impacts on vegetation can have cascading effects on soil 

carbon cycling [32]. 

 

Global Implications and Feedbacks 

Climate-Carbon Feedbacks 

The response of soil carbon to extreme weather events creates 

important feedbacks to the climate system. Carbon losses 

from soils contribute additional CO₂ to the atmosphere, 

potentially accelerating warming and increasing the 

frequency and intensity of extreme events [33]. This positive 

feedback mechanism could significantly alter projections of 

future atmospheric CO₂ concentrations. 

Current Earth system models show large uncertainties in their 

representation of these feedback processes, with some 

models predicting soil carbon gains under future climate 

scenarios while others project substantial losses [34]. 

Improving the representation of extreme event impacts on 

soil carbon is therefore crucial for reducing uncertainty in 

climate projections. 

 

Regional Variations 

The magnitude and direction of soil carbon responses to 

extreme events vary significantly across different regions and 

ecosystems. Arctic soils, which contain approximately 50% 

of global soil carbon, are particularly vulnerable to warming-

induced carbon losses [35]. Tropical soils, while containing 

less carbon per unit area, process carbon more rapidly and 

may be more sensitive to precipitation extremes [36]. 

Temperate grasslands and agricultural systems show 

intermediate sensitivities but cover large areas globally, 

making their collective response highly significant for global 

carbon budgets [37]. Understanding this spatial heterogeneity 

is essential for scaling up local observations to global 

assessments. 

 

Management Implications and Strategies 

Adaptive Management Approaches 

Managing soil carbon under increasing climate variability 

requires adaptive strategies that account for the probabilistic 

nature of extreme events. Traditional soil management 

practices developed under stable climate conditions may be 

inadequate for maintaining soil carbon stocks under future 

climate scenarios [38]. 

Key adaptive management principles include: (1) 

Diversification - Promoting diverse cropping systems and 

land uses to enhance resilience; (2) Flexibility - Developing 

management systems that can be rapidly adjusted in response 

to changing conditions; and (3) Monitoring - Implementing 

robust monitoring systems to track soil carbon changes and 

management effectiveness. 

 

Nature-Based Solutions 

Nature-based solutions offer promising approaches for 

enhancing soil carbon resilience to extreme events. These 

include: (1) Cover cropping - Maintaining living cover 

reduces erosion risk and provides continuous carbon inputs 
[39]; (2) Agroforestry - Integrating trees into agricultural 

systems enhances carbon storage and provides multiple co-
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benefits [40]; and (3) Wetland restoration - Restoring wetlands 

can provide flood protection while sequestering substantial 

amounts of carbon [41]. 

 

Research Needs and Future Directions 

Process Understanding 

Despite significant advances in understanding soil carbon 

dynamics, substantial knowledge gaps remain regarding the 

mechanisms controlling carbon responses to extreme events. 

Priority research areas include: (1) Microbial community 

dynamics - Understanding how extreme events affect 

microbial community composition and function over 

multiple time scales; (2) Aggregate-scale processes - 

Elucidating the role of soil structure in controlling carbon 

accessibility and stability; and (3) Plant-soil interactions - 

Quantifying how extreme event impacts on vegetation 

cascade through soil carbon systems. 

 

Modeling and Prediction 

Improving predictive capacity requires development of new 

modeling approaches that can capture the complex, non-

linear responses of soil carbon to extreme events. Machine 

learning approaches show promise for identifying patterns in 

large datasets, while mechanistic models need better 

representation of key processes [42]. 

 

Scaling Challenges 

Scaling up from plot-level observations to regional and 

global assessments remains a significant challenge. Remote 

sensing technologies offer new opportunities for monitoring 

soil carbon changes across large areas, but ground-truthing 

and validation remain essential [43]. 

 

Conclusions 

Extreme weather events are fundamentally altering soil 

carbon dynamics globally, with implications extending far 

beyond the duration of individual events. The evidence 

suggests that most extreme events promote net carbon losses 

from soils, potentially creating positive feedbacks that 

accelerate climate change. However, the magnitude and 

direction of these responses vary significantly across 

different event types, ecosystems, and time scales. 

Key findings from this review include: (1) Drought events 

initially reduce decomposition but ultimately promote carbon 

losses through reduced inputs and post-drought respiration 

pulses; (2) Extreme precipitation events cause carbon losses 

through erosion, leaching, and altered decomposition 

pathways; (3) Heatwaves consistently promote carbon losses 

through enhanced decomposition rates; and (4) Compound 

events can have synergistic effects exceeding individual 

event impacts. 

The implications for climate change mitigation are 

significant. Soil carbon management strategies must account 

for increasing climate variability and the non-linear responses 

of soil systems to extreme events. This requires adaptive 

management approaches, enhanced monitoring systems, and 

continued research to improve process understanding and 

predictive capacity. 

Future research priorities should focus on mechanistic 

understanding of extreme event impacts, development of 

robust predictive models, and evaluation of management 

strategies for enhancing soil carbon resilience. Only through 

such integrated approaches can we hope to maintain and 

enhance the critical role of soils in global carbon cycling 

under a changing climate. 
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