Modelling Soil Water Dynamics with Downscaled Climate Predictions

Dr. Sneha Pillai 1*, Dr. Deepak Rana 2, Charu Sinha 3

- ¹ Department of Soil, University of Kerala, Thiruvananthapuram, India
- ² Department of Soil, Banasthali Vidyapith, Rajasthan, India
- * Corresponding Author: Dr. Deepak Rana

Article Info

P-ISSN: 3051-3448 **E-ISSN:** 3051-3456

Volume: 06 Issue: 01

January - June 2025 Received: 19-03-2025 Accepted: 25-04-2025 Published: 29-05-2025

Page No: 57-64

Abstract

Soil water dynamics play a crucial role in agricultural productivity, ecosystem functioning, and hydrological processes. Accurate prediction of soil moisture patterns under future climate scenarios is essential for sustainable water resource management and agricultural planning. This study reviews current approaches for modelling soil water dynamics using downscaled climate predictions, examining the integration of global climate models (GCMs) with regional soil water models. We analyze various downscaling techniques including statistical and dynamical methods, their applications in soil water modelling, and associated uncertainties. The review synthesizes findings from recent studies demonstrating that ensemble approaches combining multiple downscaled climate projections with physically-based soil water models provide the most robust predictions. Key challenges include handling precipitation extremes, representing soil heterogeneity, and quantifying uncertainty cascades from climate models to local soil water predictions. Future research priorities include improving sub-daily precipitation downscaling, incorporating soil-vegetationatmosphere feedbacks, and developing probabilistic prediction frameworks for decision support systems.

Keywords: soil water modelling, climate downscaling, hydrological modelling, precipitation, evapotranspiration, uncertainty quantification

Introduction

Soil water dynamics represent a critical component of the terrestrial water cycle, influencing agricultural productivity, ecosystem services, and regional hydrology [1]. Understanding and predicting soil moisture patterns under changing climate conditions is essential for sustainable water resource management, crop planning, and drought preparedness [2]. The increasing frequency and intensity of extreme weather events due to climate change further emphasizes the need for robust soil water prediction systems that can operate across multiple spatial and temporal scales [3].

Global climate models (GCMs) provide the primary source of information about future climate conditions, but their coarse spatial resolution (typically 100-200 km) limits their direct application to local-scale soil water modelling [4]. This scale mismatch necessitates the use of downscaling techniques to bridge the gap between large-scale climate projections and the fine-scale information required for soil water dynamics [5]. Downscaling methods can be broadly categorized into statistical and dynamical approaches, each with distinct advantages and limitations for different applications [6].

The complexity of soil water dynamics arises from the interaction of multiple processes including precipitation infiltration, evapotranspiration, lateral flow, and groundwater exchange [7]. These processes operate across various spatial scales, from porescale water movement to watershed-scale hydrological responses [8]. Additionally, soil heterogeneity, vegetation patterns, and topographic variability create significant spatial variability in soil water content that must be captured in modelling frameworks [9].

Recent advances in computational power and modelling techniques have enabled the development of sophisticated soil water models that can utilize high-resolution climate data ^[10]. However, significant challenges remain in quantifying and propagating uncertainties from climate models through downscaling procedures to final soil water predictions ^[11].

Understanding these uncertainty cascades is crucial for developing reliable decision support systems for water resource management and agricultural planning [12].

The objectives of this review are to: (1) examine current approaches for downscaling climate predictions for soil water modelling applications, (2) analyze the performance and limitations of different modelling frameworks, (3) assess uncertainty quantification methods, and (4) identify future research priorities for improving soil water predictions under climate change.

Climate Downscaling Methods Statistical Downscaling

Statistical downscaling establishes empirical relationships between large-scale climate variables and local-scale meteorological conditions. These relationships are typically developed using historical observations and then applied to future climate projections [13]. Common statistical downscaling methods include linear regression, quantile mapping, weather generators, and machine learning approaches [14].

Table 1: Comparison	of climate	downscaling met	thods for so	il water applications

Method	Spatial Resolution	Computational Cost	Temporal Detail	Physical Consistency	Uncertainty Handling
Statistical	High (1-10 km)	Low	Daily/sub-daily	Limited	Good
Dynamical	Medium (10-50 km)	High	Hourly	Excellent	Limited
Hybrid	High (1-10 km)	Medium	Daily/sub-daily	Good	Good
Machine Learning	Variable	Medium	Variable	Variable	Excellent

Bias correction methods, particularly quantile mapping, have become widely used for adjusting GCM outputs to match local climatological distributions ^[15]. These methods are particularly important for precipitation, which often exhibits significant biases in climate models ^[16]. However, statistical downscaling methods rely on the assumption of stationarity in climate relationships, which may not hold under changing climate conditions ^[17].

Weather generators represent another class of statistical downscaling tools that use stochastic models to generate synthetic weather sequences consistent with projected climate statistics [18]. These approaches are particularly valuable for generating the long time series required for hydrological impact assessments and uncertainty quantification [19].

Dynamical Downscaling

Dynamical downscaling uses high-resolution regional climate models (RCMs) to provide physically consistent fine-scale climate information ^[20]. RCMs apply the same physical principles as GCMs but at higher spatial resolution, typically 10-50 km, enabling better representation of topographic effects and mesoscale processes ^[21].

The primary advantage of dynamical downscaling is its physical consistency and ability to simulate extreme events that may not be well captured by statistical methods ^[22]. However, RCMs are computationally expensive and may inherit biases from the driving GCMs while potentially introducing new biases through model physics and parameterizations ^[23].

Recent developments in convection-permitting models (CPMs) with resolutions of 1-4 km show promise for better representing precipitation extremes and sub-daily variability [24]. These models explicitly resolve convective processes rather than parameterizing them, leading to improved simulation of intense precipitation events that are crucial for soil water dynamics [25].

Hybrid Approaches

Hybrid downscaling approaches combine elements of both statistical and dynamical methods to leverage their respective advantages while mitigating individual limitations ^[26]. Common hybrid approaches include bias-corrected dynamical downscaling, statistical-dynamical methods, and ensemble approaches combining multiple downscaling techniques ^[27].

Perfect prognosis approaches represent one type of hybrid method where statistical relationships are established between observed large-scale circulation patterns and local weather conditions, then applied to GCM-simulated circulation patterns [28]. Model output statistics (MOS) approaches post-process RCM outputs using statistical correction methods [29].

Soil Water Modelling Frameworks Physical Process Models

Physically-based soil water models simulate water movement using fundamental principles such as Darcy's law and the Richards equation ^[30]. These models explicitly represent processes including infiltration, redistribution, evapotranspiration, and drainage ^[31]. Popular physically-based models include HYDRUS, SWAP, and components of integrated hydrological models like MIKE SHE and MODFLOW ^[32].

The Richards equation forms the foundation of most physically-based soil water models:

$$\partial \theta / \partial t = \partial / \partial z [K(\theta)(\partial h / \partial z + 1)] - S(z,t)$$

where θ is volumetric water content, t is time, z is depth, $K(\theta)$ is unsaturated hydraulic conductivity, h is pressure head, and S(z,t) represents sink/source terms [33].

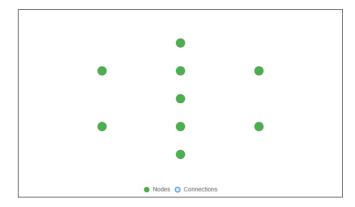


Fig 1: Conceptual framework for integrating downscaled climate data with soil water models

Physically-based models provide detailed representations of soil water processes but require extensive parameterization and computational resources [34]. Parameter estimation

remains challenging, particularly for heterogeneous soils and large spatial domains [35].

Conceptual Models

Conceptual soil water models use simplified representations of hydrological processes while maintaining physical realism [36]. These models typically employ storage-based approaches with empirical relationships for key processes [37]. Examples include the Sacramento model, GR4J, and the Variable Infiltration Capacity (VIC) model [38].

Conceptual models offer computational efficiency and reduced parameter requirements compared to physically-

based models, making them suitable for large-scale applications and ensemble modelling [39]. However, their simplified process representations may limit their ability to respond appropriately to changing climate conditions [40].

Machine Learning Approaches

Machine learning methods are increasingly being applied to soil water modelling, leveraging their ability to identify complex patterns in large datasets [41]. Deep learning approaches, including recurrent neural networks and convolutional neural networks, have shown promise for soil moisture prediction [42].

Table 2: Performance comparison of soil water modelling approaches

Model Type	RMSE (cm³/cm³)	Nash-Sutcliffe	Computational Time	Parameter Requirements
Physical-based	0.025-0.045	0.75-0.85	High (hours-days)	High (>20 parameters)
Conceptual	0.035-0.055	0.65-0.80	Medium (minutes)	Medium (5-15 parameters)
Machine Learning	0.020-0.040	0.70-0.90	Low (seconds-minutes)	Variable
Ensemble	0.020-0.035	0.80-0.92	Medium-High	High

Machine learning models can effectively handle non-linear relationships and multiple input variables but may lack physical interpretability and struggle with extrapolation to conditions outside their training data ^[43]. Hybrid approaches combining machine learning with physical models show particular promise ^[44].

Integration Challenges and Solutions Temporal Scale Matching

Soil water dynamics respond to precipitation and evapotranspiration at sub-daily time scales, but many climate models provide only daily outputs [45]. This temporal scale mismatch can lead to significant errors in soil water predictions, particularly during intense precipitation events [46]

Temporal disaggregation methods have been developed to generate sub-daily meteorological data from daily climate projections ^[47]. These methods range from simple uniform distribution approaches to sophisticated weather generators that preserve statistical properties of observed sub-daily variability ^[48].

Spatial Scale Considerations

The spatial scale of climate data must be appropriate for the intended soil water modelling application [49]. While higher

resolution is generally preferred, the optimal resolution depends on the dominant hydrological processes and the intended use of model outputs ^[50].

Spatial downscaling methods can be applied to interpolate climate data to finer resolutions, but care must be taken to preserve spatial correlations and extreme values ^[51]. Geostatistical methods, regression kriging, and machine learning approaches have all been applied to spatial downscaling of meteorological variables ^[52].

Uncertainty Quantification

Uncertainty in soil water predictions arises from multiple sources including climate model uncertainty, downscaling method uncertainty, soil parameter uncertainty, and model structure uncertainty [53]. Quantifying and propagating these uncertainties through the modelling chain is essential for providing reliable predictions [54].

Ensemble approaches represent the most common method for uncertainty quantification, using multiple climate models, downscaling methods, and soil water model configurations [55]. Bayesian methods provide a formal framework for uncertainty quantification but can be computationally demanding [56].

Table 3: Sources of uncertainty in soil water prediction systems

Uncertainty Source	Magnitude (% of total variance)	Temporal Dependency	Spatial Dependency	Management Strategy
Climate Model	40-60%	Seasonal	Regional	Multi-model ensemble
Downscaling Method	15-25%	Event-based	Local	Method comparison
Soil Parameters	20-35%	Low	High	Field measurements
Model Structure	10-20%	Low	Medium	Multi-model approach

Applications and Case Studies Agricultural Applications

Soil water modelling with downscaled climate data has found extensive application in agricultural planning and crop management ^[57]. These applications include irrigation scheduling, drought risk assessment, and crop yield prediction ^[58]. Integration with crop models enables assessment of climate change impacts on agricultural productivity ^[59].

Recent studies have demonstrated the value of ensemble soil water predictions for optimizing irrigation decisions under uncertainty ^[60]. Probabilistic forecasts allow farmers to balance the risks of over- and under-irrigation based on their risk preferences and economic constraints ^[61].

Drought Monitoring and Prediction

Soil moisture is a key indicator for agricultural and hydrological drought conditions ^[62]. Downscaled climate

predictions enable seasonal drought forecasting, supporting early warning systems and water resource management $^{[63]}$. The integration of satellite-derived soil moisture observations with model predictions improves drought monitoring capabilities $^{[64]}$.

Standardized soil moisture indices derived from model outputs provide objective measures of drought severity that can be compared across regions and time periods ^[65]. These indices are increasingly being incorporated into operational drought monitoring systems ^[66].

Water Resource Management

Regional water resource planning requires long-term projections of soil water availability under climate change scenarios ^[67]. Downscaled climate predictions enable assessment of changes in seasonal patterns, drought frequency, and extreme event impacts ^[68].

Soil water models integrated with groundwater and surface water models provide comprehensive assessments of water resource availability [69]. These integrated approaches are essential for understanding climate change impacts on total water resources [70].

Model Evaluation and Validation Performance Metrics

Evaluation of soil water models requires multiple performance metrics that capture different aspects of model behavior ^[71]. Common metrics include root mean square error (RMSE), Nash-Sutcliffe efficiency, correlation coefficient, and bias measures ^[72]. Metrics specific to extreme events, such as the ability to predict drought onset and recovery, are particularly important for climate change applications ^[73].

Temporal evaluation should consider performance across different time scales, from daily variations to seasonal and interannual patterns [74]. Spatial evaluation is equally important, particularly for distributed models covering heterogeneous landscapes [75].

Validation Strategies

Cross-validation approaches are essential for assessing model performance and avoiding overfitting ^[76]. Temporal cross-validation, where models are trained on one time period and tested on another, is particularly relevant for climate change applications ^[77].

Independent validation using data not used in model development or calibration provides the most rigorous test of model performance ^[78]. However, limited availability of long-term soil moisture observations often constrains validation efforts ^[79].

Future Research Directions Improved Process Representation

Future research should focus on better representation of key processes affecting soil water dynamics under changing climate conditions ^[80]. Priority areas include: (1) Enhanced representation of soil-vegetation-atmosphere interactions, (2) Improved simulation of preferential flow and macropore effects, (3) Better characterization of freeze-thaw processes in cold regions, and (4) Integration of biogeochemical processes affecting soil structure ^[81].

The development of models that can adapt their process representations based on changing environmental conditions represents an important frontier [82]. Machine learning

approaches may contribute to this goal by identifying optimal process representations for different conditions [83].

Enhanced Downscaling Methods

Advances in downscaling methods should focus on better representation of extreme events and sub-daily variability ^[84]. Convection-permitting climate models show promise but remain computationally expensive for long-term applications ^[85]. Development of computationally efficient methods for generating sub-daily meteorological data represents a key research priority ^[86].

Machine learning approaches offer new possibilities for statistical downscaling, particularly for handling non-stationary relationships and extreme events [87]. Hybrid approaches combining machine learning with physical understanding may provide optimal solutions [88].

Uncertainty Quantification

Improved methods for uncertainty quantification and communication are needed to support decision-making under climate uncertainty [89]. Research priorities include: (1) Development of computationally efficient methods for propagating uncertainties through complex modelling chains, (2) Better understanding of uncertainty dependencies across spatial and temporal scales, and (3) Methods for incorporating expert knowledge into uncertainty assessments [90]

Probabilistic prediction frameworks that provide actionable information for decision-makers represent an important application area ^[91]. These frameworks must balance scientific rigor with practical usability ^[92].

Operational Implementation

Transitioning research developments into operational soil water prediction systems requires addressing several challenges [93]. These include: (1) Developing automated data processing and quality control systems, (2) Creating user-friendly interfaces for non-expert users, (3) Establishing protocols for model updating and performance monitoring, and (4) Integrating predictions with existing decision support systems [94].

Real-time data assimilation using satellite observations and in-situ measurements can improve prediction accuracy and provide continuous model validation ^[95]. The integration of multiple data sources requires sophisticated data fusion techniques ^[96].

Conclusions

Modelling soil water dynamics with downscaled climate predictions represents a rapidly evolving field with significant potential for supporting water resource management and agricultural planning under climate change. The integration of global climate projections with local-scale soil water models through downscaling techniques has advanced considerably, but important challenges remain.

Key findings from this review include: (1) Statistical and dynamical downscaling methods each offer distinct advantages, with hybrid approaches showing particular promise; (2) Physically-based soil water models provide detailed process representation but require extensive parameterization, while conceptual and machine learning models offer computational efficiency; (3) Ensemble approaches combining multiple models and downscaling methods provide the most robust uncertainty quantification;

and (4) Temporal and spatial scale matching remains a critical challenge requiring continued method development. The most significant limitation in current approaches is the treatment of uncertainty, particularly the propagation of uncertainties from climate models through downscaling procedures to final soil water predictions. Future research should prioritize the development of computationally efficient uncertainty quantification methods and probabilistic prediction frameworks.

Emerging opportunities include the application of machine learning techniques to both downscaling and soil water modelling, the use of convection-permitting climate models for better extreme event representation, and the integration of satellite observations for real-time model improvement. The transition from research tools to operational prediction systems represents a critical step for realizing the societal benefits of these technological advances.

The increasing availability of high-performance computing resources and earth observation data provides unprecedented opportunities for advancing soil water prediction capabilities. Success in this field will require continued collaboration between climate scientists, hydrologists, and end-users to ensure that technical advances translate into practical benefits for water resource management and agricultural sustainability.

References

- 1. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, *et al.* Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews. 2010;99(3-4):125-161.
- 2. Sheffield J, Wood EF. Projected changes in drought occurrence under future global warming from multimodel, multi-scenario, IPCC AR4 simulations. Climate Dynamics. 2008;31(1):79-105.
- 3. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, *et al.* Global warming and changes in drought. Nature Climate Change. 2014;4(1):17-22.
- 4. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, *et al.* Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics. 2010;48(3):RG3003.
- Fowler HJ, Blenkinsop S, Tebaldi C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology. 2007;27(12):1547-1578
- Wilby RL, Wigley TML. Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography. 1997;21(4):530-548.
- 7. Vereecken H, Huisman JA, Pachepsky Y, Montzka C, van der Kruk J, Bogena H, *et al.* On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology. 2014;516:76-96.
- 8. Western AW, Grayson RB, Blöschl G. Scaling of soil moisture: A hydrologic perspective. Annual Review of Earth and Planetary Sciences. 2002;30:149-180.
- 9. Robinson DA, Campbell CS, Hopmans JW, Hornbuckle BK, Jones SB, Knight R, *et al.* Soil moisture measurement for ecological and hydrological watershed-

- scale observatories: A review. Vadose Zone Journal. 2008;7(4):358-389.
- 10. Clark MP, Nijssen B, Lundquist JD, Kavetski D, Rupp DE, Woods RA, *et al.* A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research. 2015;51(4):2498-2514.
- 11. Beven K, Binley A. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes. 1992;6(3):279-298.
- 12. Pappenberger F, Beven KJ. Ignorance is bliss: Or seven reasons not to use uncertainty analysis. Water Resources Research. 2006;42(5):W05302.
- 13. Maraun D, Widmann M. Statistical Downscaling and Bias Correction for Climate Research. Cambridge: Cambridge University Press; c2018.
- 14. Gutmann E, Pruitt T, Clark MP, Brekke L, Arnold JR, Raff DA, *et al.* An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resources Research. 2014;50(9):7167-7186.
- Teutschbein C, Seibert J. Bias correction of regional climate model simulations for hydrological climatechange impact studies: Review and evaluation of different methods. Journal of Hydrology. 2012;456-457:12-29.
- 16. Stephens GL, L'Ecuyer T, Forbes R, Gettelmen A, Goldhirsh JC, Bodas-Salcedo A, *et al.* Dreary state of precipitation in global models. Journal of Geophysical Research: Atmospheres. 2010;115(D24):D24211.
- 17. Bürger G, Murdock TQ, Werner AT, Sobie SR, Cannon AJ. Downscaling extremes: An intercomparison of multiple statistical methods for present climate. Journal of Climate. 2012;25(12):4366-388.
- 18. Wilks DS, Wilby RL. The weather generation game: a review of stochastic weather models. Progress in Physical Geography. 1999;23(3):329-357.
- 19. Semenov MA, Barrow EM. Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change. 1997;35(4):397-414.
- 20. Giorgi F, Mearns LO. Introduction to special section: Regional climate modeling revisited. Journal of Geophysical Research: Atmospheres. 1999;104(D6):6335-52.
- 21. Rummukainen M. State-of-the-art with regional climate models. Wiley Interdisciplinary Reviews: Climate Change. 2010;1(1):82-96.
- 22. Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Climate Change. 2014;4(7):570-576.
- 23. Di Luca A, de Elía R, Laprise R. Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Climate Dynamics. 2012;38(5-6):1229-1247.
- 24. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, *et al.* A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics. 2015;53(2):323-361.
- 25. Ban N, Schmidli J, Schär C. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophysical Research Letters. 2015;42(4):1165-1172.

 Turco M, Quintana-Seguí P, Llasat MC, Herrera S, Gutiérrez JM. Testing MOS precipitation downscaling for ENSEMBLES regional climate models over Spain. Journal of Geophysical Research: Atmospheres. 2011;116(D18):D18109.

- 27. Brands S, Herrera S, Fernández J, Gutiérrez JM. How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? Climate Dynamics. 2013;41(3-4):803-817.
- 28. Benestad RE, Hanssen-Bauer I, Chen D. Empirical-statistical downscaling. Singapore: World Scientific Publishing; c2008.
- 29. Glahn HR, Lowry DA. The use of model output statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology. 1972;11(8):1203-1211.
- 30. Richards LA. Capillary conduction of liquids through porous mediums. Physics. 1931;1(5):318-333.
- 31. Hillel D. Environmental Soil Physics. San Diego: Academic Press; c1998.
- 32. Šimůnek J, van Genuchten MT, Šejna M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal. 2016;15(7):1-25.
- 33. van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal. 1980;44(5):892-898.
- 34. Vereecken H, Weynants M, Javaux M, Pachepsky Y, Schaap MG, van Genuchten MT. Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone Journal. 2010;9(4):795-820.
- 35. Wösten JHM, Pachepsky YA, Rawls WJ. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology. 2001;251(3-4):123-150.
- 36. Perrin C, Michel C, Andréassian V. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology. 2003;279(1-4):275-289.
- 37. Klemeš V. Conceptualization and scale in hydrology. Journal of Hydrology. 1983;65(1-3):1-23.
- 38. Liang X, Lettenmaier DP, Wood EF, Burges SJ. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres. 1994;99(D7):14415-14428.
- 39. Beven K. Rainfall-runoff modelling: the primer. 2nd ed. Chichester: John Wiley & Sons; c2012.
- 40. Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J. HESS Opinions "Should we apply bias correction to global and regional climate model data?". Hydrology and Earth System Sciences. 2012;16(9):3391-3404.
- 41. Shen C. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resources Research. 2018;54(11):8558-8593.
- 42. Fang K, Shen C. Near-real-time forecast of satellite-based soil moisture using long short-term memory with an adaptive data integration scheme. Journal of Hydrometeorology. 2020;21(3):399-413.
- 43. Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, *et al.* Deep learning and process understanding for data-driven Earth system science. Nature. 2019;566(7743):195-204.

44. Kraft B, Jung M, Körner M, Koirala S, Reichstein M. Towards hybrid modeling of the global hydrological cycle. Hydrology and Earth System Sciences. 2022;26(6):1579-1614.

- 45. Bergström S, Lindström G. Interpretation of runoff processes in hydrological modelling—experience from the HBV approach. Hydrological Processes. 2015;29(16):3535-3545.
- 46. Melsen LA, Teuling AJ, Torfs PJJF, Zappa M, Mizukami N, Clark MP, et al. Subjective modeling decisions can significantly impact the simulation of flood and drought events. Journal of Hydrology. 2016;539:648-662.
- 47. Breinl K, Turkington T, Stowasser M. Stochastic generation of multi-site daily precipitation for applications in risk management. Journal of Hydrology. 2013;498:23-35.
- 48. Ailliot P, Allard D, Monbet V, Naveau P. Stochastic weather generators: an overview of weather type models. Journal de la Société Française de Statistique. 2015;156(1):101-113.
- 49. Wood AW, Leung LR, Sridhar V, Lettenmaier DP. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change. 2004;62(1-3):189-216.
- 50. Addor N, Seibert J. Bias correction for hydrological impact studies—beyond the daily perspective. Hydrological Processes. 2014;28(17):4823-8.
- 51. Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, *et al.* Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology. 2008;28(15):2031-2064.
- 52. Hengl T, Heuvelink GB, Kempen B, Leenaars JG, Walsh MG, Shepherd KD, *et al.* Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PloS one. 2015;10(6):e0125814.
- 53. Bosshard T, Carambia M, Goergen K, Kotlarski S, Krahe P, Zappa M, *et al.* Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resources Research. 2013;49(3):1523-36.
- 54. Clark MP, Wilby RL, Gutmann ED, Vano JA, Gangopadhyay S, Wood AW, *et al.* Characterizing uncertainty of the hydrologic impacts of climate change. Current Climate Change Reports. 2016;2(2):55-64.
- 55. Tebaldi C, Knutti R. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A. 2007;365(1857):2053-2075.
- 56. Vrugt JA, ter Braak CJ, Diks CG, Robinson BA, Hyman JM, Higdon D. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical Simulation. 2009;10(3):273-290.
- 57. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. Prioritizing climate change adaptation needs for food security in 2030. Science. 2008;319(5863):607-610.
- 58. Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, *et al.* Constraints and potentials of future irrigation water availability on agricultural production

under climate change. Proceedings of the National Academy of Sciences. 2014;111(9):3239-3244.

- 59. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, *et al.* Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences. 2014;111(9):3268-3273.
- 60. Foster T, Brozović N, Butler AP, Neale CM, Raes D, Steduto P, *et al.* AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 2017;181:18-22.
- Mo X, Liu S, Lin Z, Guo R. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agriculture, Ecosystems & Environment. 2009;134(1-2):67-78.
- 62. Mishra AK, Singh VP. A review of drought concepts. Journal of Hydrology. 2010;391(1-2):202-216.
- 63. Hao Z, AghaKouchak A, Nakhjiri N, Farahmand A. Global integrated drought monitoring and prediction system. Scientific Data. 2014;1:140001.
- 64. Dorigo W, Wagner W, Albergel C, Albrecht F, Balsamo G, Brocca L, *et al.* ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment. 2017;203:185-215.
- 65. McKee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology; 1993 Jan 17-22; Anaheim, CA. Boston: American Meteorological Society; 1993. p. 179-83.
- 66. Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, *et al.* The drought monitor. Bulletin of the American Meteorological Society. 2002;83(8):1181-90.
- 67. Vörösmarty CJ, Green P, Salisbury J, Lammers RB. Global water resources: vulnerability from climate change and population growth. Science. 2000;289(5477):284-288.
- 68. Arnell NW. Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environmental Change. 2004;14(1):31-52.
- 69. Sophocleous M. Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal. 2002;10(1):52-67.
- 70. Winter TC, Harvey JW, Franke OL, Alley WM. Ground water and surface water: a single resource. US Geological Survey Circular 1139. Denver: US Geological Survey; c1998.
- 71. Bennett ND, Croke BF, Guariso G, Guillaume JH, Hamilton SH, Jakeman AJ, *et al.* Characterising performance of environmental models. Environmental Modelling & Software. 2013;40:1-20.
- 72. Nash JE, Sutcliffe JV. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology. 1970;10(3):282-290.
- 73. Hao Z, Singh VP. Drought characterization from a multivariate perspective: A review. Journal of Hydrology. 2015;527:668-678.
- 74. Gupta HV, Kling H, Yilmaz KK, Martinez GF. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology. 2009;377(1-2):80-91.

- 75. Parajka J, Merz R, Blöschl G. A comparison of regionalisation methods for catchment model parameters. Hydrology and Earth System Sciences. 2005;9(3):157-171.
- 76. Klemeš V. Operational testing of hydrological simulation models. Hydrological Sciences Journal. 1986;31(1):13-24.
- 77. Coron L, Andréassian V, Perrin C, Lerat J, Vaze J, Bourqui M, *et al.* Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. Water Resources Research. 2012;48(5):W05552.
- 78. Andréassian V, Perrin C, Berthet L, Le Moine N, Lerat J, Loumagne C, *et al.* HESS Opinions "Crash tests for a standardized evaluation of hydrological models". Hydrology and Earth System Sciences. 2009;13(10):1757-1764.
- 79. Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hollinger SE, Speranskaya NA, *et al.* The global soil moisture data bank. Bulletin of the American Meteorological Society. 2000;81(6):1281-1299.
- 80. Clark MP, Kavetski D, Fenicia F. Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resources Research. 2011;47(9):W09301.
- 81. Fatichi S, Vivoni ER, Ogden FL, Ivanov VY, Mirus B, Gochis D, *et al.* An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology. 2016;537:45-60.
- 82. Hrachowitz M, Savenije HH, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, *et al.* A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal. 2013;58(6):1198-1255.
- 83. Karpatne A, Ebert-Uphoff I, Ravela S, Babaie HA, Kumar V. Machine learning for the geosciences: challenges and opportunities. IEEE Transactions on Knowledge and Data Engineering. 2019;31(8):1544-1554.
- 84. Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, Gutiérrez JM, *et al.* Towards process-informed bias correction of climate change simulations. Nature Climate Change. 2017;7(11):764-773.
- 85. Fosser G, Khodayar S, Berg P. Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dynamics. 2015;44(1-2):45-60.
- 86. Breinl K, Di Baldassarre G, Mazzoleni M, Lun D, Vico G. Extreme dry and wet spells face changes in their duration and timing. Environmental Research Letters. 2020;15(7):074040.
- 87. Vandal T, Kodra E, Ganguly S, Michaelis A, Nemani R, Ganguly AR. DeepSD: Generating high resolution climate change projections through single image superresolution. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2017 Aug 13-17; Halifax, NS. New York: ACM; 2017. p. 1663-1672.
- 88. Hsu K, Gupta HV, Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research. 1995;31(10):2517-2530.
- 89. Krzysztofowicz R. The case for probabilistic forecasting in hydrology. Journal of Hydrology. 2001;249(1-4):2-9.

90. Montanari A, Koutsoyiannis D. A blueprint for process-based modeling of uncertain hydrological systems. Water Resources Research. 2012;48(9):W09555.

- 91. Cloke HL, Pappenberger F. Ensemble flood forecasting: A review. Journal of Hydrology. 2009;375(3-4):613-26.
- 92. Ramos MH, Mathevet T, Thielen J, Pappenberger F. Communicating uncertainty in hydro-meteorological forecasts: mission impossible? Meteorological Applications. 2010;17(2):223-235.
- 93. Thielen J, Bartholmes J, Ramos MH, de Roo A. The European flood alert system–part 1: concept and development. Hydrology and Earth System Sciences. 2009;13(2):125-140.
- 94. Werner M, Schellekens J, Gijsbers P, van Dijk M, van den Akker O, Heynert K. The Delft-FEWS flood forecasting system. Environmental Modelling & Software. 2013;40:65-77.
- 95. Reichle RH, McLaughlin DB, Entekhabi D. Hydrologic data assimilation with the ensemble Kalman filter. Monthly Weather Review. 2002;130(1):103-114.
- 96. Liu Y, Weerts AH, Clark M, Hendricks Franssen HJ, Kumar S, Moradkhani H, *et al.* Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and the path forward. Hydrology and Earth System Sciences. 2012;16(10):3863-3887.