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Introduction

Soil water dynamics represent a critical component of the terrestrial water cycle, influencing agricultural productivity, ecosystem
services, and regional hydrology ™. Understanding and predicting soil moisture patterns under changing climate conditions is
essential for sustainable water resource management, crop planning, and drought preparedness 1. The increasing frequency and
intensity of extreme weather events due to climate change further emphasizes the need for robust soil water prediction systems
that can operate across multiple spatial and temporal scales 1.

Global climate models (GCMs) provide the primary source of information about future climate conditions, but their coarse
spatial resolution (typically 100-200 km) limits their direct application to local-scale soil water modelling (4. This scale mismatch
necessitates the use of downscaling techniques to bridge the gap between large-scale climate projections and the fine-scale
information required for soil water dynamics [*1. Downscaling methods can be broadly categorized into statistical and dynamical
approaches, each with distinct advantages and limitations for different applications [,

The complexity of soil water dynamics arises from the interaction of multiple processes including precipitation infiltration,
evapotranspiration, lateral flow, and groundwater exchange ["). These processes operate across various spatial scales, from pore-
scale water movement to watershed-scale hydrological responses 8. Additionally, soil heterogeneity, vegetation patterns, and
topographic variability create significant spatial variability in soil water content that must be captured in modelling frameworks
(9]

Recent advances in computational power and modelling techniques have enabled the development of sophisticated soil water

models that can utilize high-resolution climate data [0, However, significant challenges remain in quantifying and propagating
uncertainties from climate models through downscaling procedures to final soil water predictions [*4,

57|Page



Journal of Soil Future Research

Understanding these uncertainty cascades is crucial for
developing reliable decision support systems for water
resource management and agricultural planning 12,

The objectives of this review are to: (1) examine current
approaches for downscaling climate predictions for soil water
modelling applications, (2) analyze the performance and
limitations of different modelling frameworks, (3) assess
uncertainty quantification methods, and (4) identify future
research priorities for improving soil water predictions under
climate change.
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Climate Downscaling Methods

Statistical Downscaling

Statistical downscaling establishes empirical relationships
between large-scale climate variables and local-scale
meteorological conditions. These relationships are typically
developed using historical observations and then applied to
future climate projections [°.  Common statistical
downscaling methods include linear regression, quantile
mapping, weather generators, and machine learning
approaches 41,

Table 1: Comparison of climate downscaling methods for soil water applications

Method Spatial Resolution | Computational Cost | Temporal Detail | Physical Consistency | Uncertainty Handling
Statistical High (1-10 km) Low Daily/sub-daily Limited Good
Dynamical Medium (10-50 km) High Hourly Excellent Limited

Hybrid High (1-10 km) Medium Daily/sub-daily Good Good

Machine Learning Variable Medium Variable Variable Excellent

Bias correction methods, particularly quantile mapping, have
become widely used for adjusting GCM outputs to match
local climatological distributions °. These methods are
particularly important for precipitation, which often exhibits
significant biases in climate models [*61. However, statistical
downscaling methods rely on the assumption of stationarity
in climate relationships, which may not hold under changing
climate conditions [*71,

Weather generators represent another class of statistical
downscaling tools that use stochastic models to generate
synthetic weather sequences consistent with projected
climate statistics 8. These approaches are particularly
valuable for generating the long time series required for
hydrological  impact assessments and  uncertainty
quantification (9],

Dynamical Downscaling

Dynamical downscaling uses high-resolution regional
climate models (RCMs) to provide physically consistent fine-
scale climate information 2, RCMs apply the same physical
principles as GCMs but at higher spatial resolution, typically
10-50 km, enabling better representation of topographic
effects and mesoscale processes 21,

The primary advantage of dynamical downscaling is its
physical consistency and ability to simulate extreme events
that may not be well captured by statistical methods 22,
However, RCMs are computationally expensive and may
inherit biases from the driving GCMs while potentially
introducing new biases through model physics and
parameterizations 21,

Recent developments in convection-permitting models
(CPMs) with resolutions of 1-4 km show promise for better
representing precipitation extremes and sub-daily variability
24 These models explicitly resolve convective processes
rather than parameterizing them, leading to improved
simulation of intense precipitation events that are crucial for
soil water dynamics 21,

Hybrid Approaches

Hybrid downscaling approaches combine elements of both
statistical and dynamical methods to leverage their respective
advantages while mitigating individual limitations [26],
Common hybrid approaches include bias-corrected
dynamical downscaling, statistical-dynamical methods, and
ensemble approaches combining multiple downscaling
techniques [?71.

Perfect prognosis approaches represent one type of hybrid
method where statistical relationships are established
between observed large-scale circulation patterns and local
weather conditions, then applied to GCM-simulated
circulation patterns %, Model output statistics (MOS)
approaches post-process RCM outputs using statistical
correction methods 2%,

Soil Water Modelling Frameworks

Physical Process Models

Physically-based soil water models simulate water movement
using fundamental principles such as Darcy's law and the
Richards equation . These models explicitly represent
processes including infiltration, redistribution,
evapotranspiration, and drainage Y. Popular physically-
based models include HYDRUS, SWAP, and components of
integrated hydrological models like MIKE SHE and
MODFLOW [32,

The Richards equation forms the foundation of most
physically-based soil water models:

00/0t = 0/0z[K(0)(oh/dz + 1)] - S(z,t)
where 0 is volumetric water content, t is time, z is depth, K(8)

is unsaturated hydraulic conductivity, h is pressure head, and
S(z,t) represents sink/source terms (33,

@ Nodes Q Connections

Fig 1: Conceptual framework for integrating downscaled climate
data with soil water models

Physically-based models provide detailed representations of

soil water processes but require extensive parameterization
and computational resources 4. Parameter estimation
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remains challenging, particularly for heterogeneous soils and
large spatial domains [,

Conceptual Models

Conceptual soil water models use simplified representations
of hydrological processes while maintaining physical realism
138, These models typically employ storage-based approaches
with empirical relationships for key processes 1. Examples
include the Sacramento model, GR4J, and the Variable
Infiltration Capacity (VIC) model (8],

Conceptual models offer computational efficiency and
reduced parameter requirements compared to physically-
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based models, making them suitable for large-scale
applications and ensemble modelling B%. However, their
simplified process representations may limit their ability to
respond appropriately to changing climate conditions I,

Machine Learning Approaches

Machine learning methods are increasingly being applied to
soil water modelling, leveraging their ability to identify
complex patterns in large datasets “J. Deep learning
approaches, including recurrent neural networks and
convolutional neural networks, have shown promise for soil
moisture prediction 12,

Table 2: Performance comparison of soil water modelling approaches

Model Type RMSE (cmd/cm?3) Nash-Sutcliffe Computational Time Parameter Requirements
Physical-based 0.025-0.045 0.75-0.85 High (hours-days) High (>20 parameters)
Conceptual 0.035-0.055 0.65-0.80 Medium (minutes) Medium (5-15 parameters)
Machine Learning 0.020-0.040 0.70-0.90 Low (seconds-minutes) Variable
Ensemble 0.020-0.035 0.80-0.92 Medium-High High

Machine learning models can effectively handle non-linear
relationships and multiple input variables but may lack
physical interpretability and struggle with extrapolation to
conditions outside their training data 3. Hybrid approaches
combining machine learning with physical models show
particular promise (41,

Integration Challenges and Solutions

Temporal Scale Matching

Soil water dynamics respond to precipitation and
evapotranspiration at sub-daily time scales, but many climate
models provide only daily outputs 1. This temporal scale
mismatch can lead to significant errors in soil water
predictions, particularly during intense precipitation events
[46]

Temporal disaggregation methods have been developed to
generate sub-daily meteorological data from daily climate
projections 71, These methods range from simple uniform
distribution approaches to sophisticated weather generators
that preserve statistical properties of observed sub-daily
variability €,

Spatial Scale Considerations
The spatial scale of climate data must be appropriate for the
intended soil water modelling application %1, While higher

resolution is generally preferred, the optimal resolution
depends on the dominant hydrological processes and the
intended use of model outputs %,

Spatial downscaling methods can be applied to interpolate
climate data to finer resolutions, but care must be taken to
preserve spatial correlations and extreme values B4,
Geostatistical methods, regression kriging, and machine
learning approaches have all been applied to spatial
downscaling of meteorological variables 52,

Uncertainty Quantification

Uncertainty in soil water predictions arises from multiple
sources including climate model uncertainty, downscaling
method uncertainty, soil parameter uncertainty, and model
structure uncertainty %, Quantifying and propagating these
uncertainties through the modelling chain is essential for
providing reliable predictions %4,

Ensemble approaches represent the most common method for
uncertainty quantification, using multiple climate models,
downscaling methods, and soil water model configurations
[5%1 Bayesian methods provide a formal framework for
uncertainty quantification but can be computationally
demanding ©°1,

Table 3: Sources of uncertainty in soil water prediction systems

Uncertainty Source | Magnitude (% of total variance) | Temporal Dependency | Spatial Dependency | Management Strategy
Climate Model 40-60% Seasonal Regional Multi-model ensemble

Downscaling Method 15-25% Event-based Local Method comparison
Soil Parameters 20-35% Low High Field measurements
Model Structure 10-20% Low Medium Multi-model approach

Applications and Case Studies

Agricultural Applications

Soil water modelling with downscaled climate data has found
extensive application in agricultural planning and crop
management 71 These applications include irrigation
scheduling, drought risk assessment, and crop vyield
prediction 8, Integration with crop models enables
assessment of climate change impacts on agricultural
productivity 59,

Recent studies have demonstrated the value of ensemble soil
water predictions for optimizing irrigation decisions under
uncertainty [, Probabilistic forecasts allow farmers to
balance the risks of over- and under-irrigation based on their
risk preferences and economic constraints 64,

Drought Monitoring and Prediction

Soil moisture is a key indicator for agricultural and
hydrological drought conditions 2. Downscaled climate
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predictions enable seasonal drought forecasting, supporting
early warning systems and water resource management [,
The integration of satellite-derived soil moisture observations
with model predictions improves drought monitoring
capabilities 64,

Standardized soil moisture indices derived from model
outputs provide objective measures of drought severity that
can be compared across regions and time periods %, These
indices are increasingly being incorporated into operational
drought monitoring systems [66],

Water Resource Management

Regional water resource planning requires long-term
projections of soil water availability under climate change
scenarios 67, Downscaled climate predictions enable
assessment of changes in seasonal patterns, drought
frequency, and extreme event impacts (8],

Soil water models integrated with groundwater and surface
water models provide comprehensive assessments of water
resource availability %9, These integrated approaches are
essential for understanding climate change impacts on total
water resources [,

Model Evaluation and Validation

Performance Metrics

Evaluation of soil water models requires multiple
performance metrics that capture different aspects of model
behavior [l Common metrics include root mean square error
(RMSE), Nash-Sutcliffe efficiency, correlation coefficient,
and bias measures "2, Metrics specific to extreme events,
such as the ability to predict drought onset and recovery, are
particularly important for climate change applications 73],
Temporal evaluation should consider performance across
different time scales, from daily variations to seasonal and
interannual patterns [, Spatial evaluation is equally
important, particularly for distributed models covering
heterogeneous landscapes [,

Validation Strategies

Cross-validation approaches are essential for assessing model
performance and avoiding overfitting ["61. Temporal cross-
validation, where models are trained on one time period and
tested on another, is particularly relevant for climate change
applications [,

Independent validation using data not used in model
development or calibration provides the most rigorous test of
model performance [®. However, limited availability of
long-term soil moisture observations often constrains
validation efforts [7°],

Future Research Directions

Improved Process Representation

Future research should focus on better representation of key
processes affecting soil water dynamics under changing
climate conditions (%, Priority areas include: (1) Enhanced
representation of soil-vegetation-atmosphere interactions, (2)
Improved simulation of preferential flow and macropore
effects, (3) Better characterization of freeze-thaw processes
in cold regions, and (4) Integration of biogeochemical
processes affecting soil structure 81,

The development of models that can adapt their process
representations based on changing environmental conditions
represents an important frontier 2. Machine learning
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approaches may contribute to this goal by identifying optimal
process representations for different conditions (31,

Enhanced Downscaling Methods

Advances in downscaling methods should focus on better
representation of extreme events and sub-daily variability 84,
Convection-permitting climate models show promise but
remain computationally expensive for long-term applications
1851, Development of computationally efficient methods for
generating sub-daily meteorological data represents a key
research priority [,

Machine learning approaches offer new possibilities for
statistical downscaling, particularly for handling non-
stationary relationships and extreme events 7. Hybrid
approaches combining machine learning with physical
understanding may provide optimal solutions (8],

Uncertainty Quantification

Improved methods for uncertainty quantification and
communication are needed to support decision-making under
climate uncertainty B9, Research priorities include: (1)
Development of computationally efficient methods for
propagating uncertainties through complex modelling chains,
(2) Better understanding of uncertainty dependencies across
spatial and temporal scales, and (3) Methods for
incorporating expert knowledge into uncertainty assessments
[90]

Probabilistic prediction frameworks that provide actionable
information for decision-makers represent an important
application area Y. These frameworks must balance
scientific rigor with practical usability 21,

Operational Implementation

Transitioning research developments into operational soil
water prediction systems requires addressing several
challenges 1. These include: (1) Developing automated data
processing and quality control systems, (2) Creating user-
friendly interfaces for non-expert users, (3) Establishing
protocols for model updating and performance monitoring,
and (4) Integrating predictions with existing decision support
systems 41,

Real-time data assimilation using satellite observations and
in-situ measurements can improve prediction accuracy and
provide continuous model validation [*1. The integration of
multiple data sources requires sophisticated data fusion
techniques 81,

Conclusions

Modelling soil water dynamics with downscaled climate
predictions represents a rapidly evolving field with
significant potential for supporting water resource
management and agricultural planning under climate change.
The integration of global climate projections with local-scale
soil water models through downscaling techniques has
advanced considerably, but important challenges remain.
Key findings from this review include: (1) Statistical and
dynamical downscaling methods each offer distinct
advantages, with hybrid approaches showing particular
promise; (2) Physically-based soil water models provide
detailed process representation but require extensive
parameterization, while conceptual and machine learning
models offer computational efficiency; (3) Ensemble
approaches combining multiple models and downscaling
methods provide the most robust uncertainty quantification;
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and (4) Temporal and spatial scale matching remains a
critical challenge requiring continued method development.

The most significant limitation in current approaches is the
treatment of uncertainty, particularly the propagation of
uncertainties from climate models through downscaling
procedures to final soil water predictions. Future research
should prioritize the development of computationally
efficient uncertainty quantification methods and probabilistic
prediction frameworks.

Emerging opportunities include the application of machine
learning techniques to both downscaling and soil water
modelling, the use of convection-permitting climate models
for better extreme event representation, and the integration of
satellite observations for real-time model improvement. The
transition from research tools to operational prediction
systems represents a critical step for realizing the societal
benefits of these technological advances.

The increasing availability of high-performance computing
resources and earth observation data provides unprecedented
opportunities for advancing soil water prediction capabilities.
Success in this field will require continued collaboration
between climate scientists, hydrologists, and end-users to
ensure that technical advances translate into practical benefits
for water resource management and agricultural
sustainability.
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