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Abstract 
Digital soil mapping (DSM) has emerged as a revolutionary approach for 
understanding soil spatial variability by integrating remote sensing data with machine 
learning algorithms. This study presents a comprehensive framework for digital soil 
mapping using multispectral satellite imagery, terrain attributes, and advanced 
machine learning techniques including Random Forest (RF), Support Vector 
Machines (SVM), and Artificial Neural Networks (ANN). The research was 
conducted across a 5000 hectare agricultural region in the Indo-Gangetic Plains, 
utilizing Sentinel-2 and Landsat-8 imagery combined with field sampling data from 
450 georeferenced locations. Results demonstrated that Random Forest achieved the 
highest accuracy with R² = 0.87 for soil organic carbon prediction, while SVM 
performed best for soil texture classification with 92% overall accuracy. The 
integration of topographic variables derived from digital elevation models 
significantly improved prediction accuracy by 15-20%. This study provides valuable 
insights into the effectiveness of different machine learning approaches for soil 
property mapping and establishes a robust methodology for large-scale soil 
characterization supporting precision agriculture applications. 
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1. Introduction 

Soil mapping has traditionally relied on conventional field surveys and laboratory analyses, which are time-consuming, labor-

intensive, and costly [1]. The increasing demand for detailed soil information to support precision agriculture, environmental 

monitoring, and sustainable land management has driven the development of digital soil mapping (DSM) techniques [4]. DSM 

represents a paradigm shift from traditional soil mapping approaches by utilizing quantitative relationships between soil 

properties and environmental variables [2]. 

Remote sensing technology has revolutionized soil science by providing synoptic coverage, temporal monitoring capabilities, 

and cost-effective data acquisition [3]. Satellite-based multispectral and hyperspectral sensors can detect soil properties through 

spectral reflectance patterns, particularly in the visible, near-infrared, and shortwave infrared regions [5]. The integration of 

remote sensing data with machine learning algorithms has opened new avenues for accurate and efficient soil property prediction 

[6]. Machine learning techniques have demonstrated superior performance in handling complex, non-linear relationships between 

soil properties and environmental predictors [7]. Among various algorithms, Random Forest, Support Vector Machines, and 

Artificial Neural Networks have shown particular promise in soil mapping applications [8, 9]. These algorithms can effectively 

integrate multiple data sources including satellite imagery, topographic attributes, climatic variables, and existing soil maps [10]. 

The Indo-Gangetic Plains represent one of the world's most important agricultural regions, supporting over 40% of India's 

population [11]. However, intensive agricultural practices have led to significant soil degradation, making accurate soil mapping 

crucial for sustainable land management [12]. Previous studies in this region have been limited by sparse sampling and 

conventional mapping approaches [13].  
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This research aims to develop and evaluate a comprehensive 

digital soil mapping framework using remote sensing and 

machine learning techniques. The specific objectives include: 

(1) developing predictive models for key soil properties using 

multispectral satellite data, (2) comparing the performance of 

different machine learning algorithms, (3) assessing the 

contribution of various environmental variables to soil 

prediction accuracy, and (4) generating high-resolution soil 

property maps for precision agriculture applications. 

 

2. Materials and Methods 

2.1 Study Area 

The study was conducted in the Haryana state of India, 

covering an area of 5000 hectares within the Indo-Gangetic 

Plains (coordinates: 29°30'N to 30°15'N and 76°45'E to 

77°30'E). The region is characterized by alluvial soils, semi-

arid climate, and intensive wheat-rice cropping systems [14]. 

The terrain is relatively flat with elevation ranging from 200 

to 250 meters above sea level. 

 

2.2 Soil Sampling and Laboratory Analysis 

A stratified random sampling approach was employed to 

collect soil samples from 450 georeferenced locations across 

the study area [15]. Sampling sites were distributed to ensure 

representative coverage of different land uses, topographic 

positions, and management practices. Soil samples were 

collected from 0-15 cm depth during the post-harvest period 

(May 2023) to minimize vegetation interference. 

Laboratory analyses were conducted following standard 

protocols [16]. Soil organic carbon (SOC) was determined 

using the Walkley-Black method, soil pH using a 1:2.5 soil-

water suspension, and soil texture using the hydrometer 

method [17]. Additional parameters including available 

nitrogen, phosphorus, and potassium were analyzed using 

established procedures [18]. 

 

2.3 Remote Sensing Data Acquisition 

Multispectral satellite imagery was acquired from multiple 

sensors to ensure comprehensive spectral coverage and 

temporal representation. Sentinel-2 Level-2A products with 

10-20m spatial resolution were obtained for the study period, 

providing 13 spectral bands from visible to shortwave 

infrared regions [19]. Landsat-8 OLI/TIRS data with 30m 

resolution supplemented the Sentinel-2 dataset, particularly 

for thermal infrared information [20]. 

All satellite images were preprocessed including atmospheric 

correction, geometric rectification, and cloud masking using 

the Sen2Cor and LEDAPS algorithms [21]. Spectral indices 

relevant to soil properties were calculated, including the 

Normalized Difference Vegetation Index (NDVI), Soil 

Adjusted Vegetation Index (SAVI), and various soil-specific 

indices [22]. 

2.4 Environmental Variables 

Topographic attributes were derived from the 30m SRTM 

Digital Elevation Model (DEM) using SAGA GIS [23]. 

Calculated parameters included elevation, slope, aspect, 

curvature, topographic wetness index (TWI), and terrain 

ruggedness index (TRI) [24]. Climate variables including 

temperature and precipitation data were obtained from the 

India Meteorological Department and interpolated to the 

study area [25]. 

 

2.5 Machine Learning Algorithms 

Three machine learning algorithms were implemented and 

compared for soil property prediction: 

• Random Forest (RF): An ensemble method combining 

multiple decision trees with bootstrap aggregating [26]. 

RF parameters were optimized using cross-validation, 

with the number of trees set to 500 and the number of 

variables tried at each split determined through grid 

search. 

• Support Vector Machine (SVM): A kernel-based 

algorithm using radial basis function (RBF) for non-

linear classification and regression [27]. Hyperparameters 

including C (regularization) and γ (kernel coefficient) 

were optimized using 10-fold cross-validation. 

• Artificial Neural Network (ANN): A multi-layer 

perceptron with one hidden layer containing 10-15 

neurons [28]. The network was trained using 

backpropagation with sigmoid activation functions and 

optimized to prevent overfitting. 

 

2.6 Model Development and Validation 

The dataset was randomly split into training (70%) and 

testing (30%) subsets. Model performance was evaluated 

using multiple metrics including coefficient of determination 

(R²), root mean square error (RMSE), mean absolute error 

(MAE), and Lin's concordance correlation coefficient (CCC) 

for continuous variables [29]. Classification accuracy was 

assessed using overall accuracy, kappa coefficient, and 

confusion matrices [30]. 

 

3. Results 

3.1 Soil Property Statistics 

Descriptive statistics for soil properties are presented in Table 

1. Soil organic carbon showed moderate variability (CV = 

34%) with values ranging from 0.3% to 1.8%. Soil pH 

exhibited low variability (CV = 8%) with most samples 

falling within the neutral to slightly alkaline range. Clay 

content varied significantly across the study area (CV = 

45%), reflecting the heterogeneous nature of alluvial 

deposits.

 
Table 1: Descriptive Statistics of Soil Properties (n = 450) 

 

Property Unit Mean Median SD CV (%) Min Max Skewness 

SOC % 0.89 0.85 0.30 34 0.31 1.84 0.65 

pH - 7.8 7.9 0.6 8 6.2 9.1 -0.23 

Clay % 28.5 27.2 12.8 45 8.4 58.7 0.34 

Sand % 45.2 44.8 18.6 41 12.3 78.9 0.18 

Silt % 26.3 25.7 9.4 36 9.8 52.1 0.41 

Available N kg/ha 142 138 48 34 62 265 0.29 

Available P kg/ha 18.6 16.8 8.9 48 4.2 42.3 0.87 
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3.2 Machine Learning Model Performance 

Table 2 presents the comparative performance of the three 

machine learning algorithms for soil organic carbon 

prediction. Random Forest achieved the highest accuracy 

with R² = 0.87 and RMSE = 0.11%, followed by SVM (R² = 

0.82, RMSE = 0.13%) and ANN (R² = 0.78, RMSE = 0.14%). 

The superior performance of RF can be attributed to its ability 

to handle non-linear relationships and reduce overfitting 

through ensemble averaging.

 
Table 2: Performance Comparison of Machine Learning Algorithms for Soil Organic Carbon Prediction 

 

Algorithm R² RMSE (%) MAE (%) CCC Training Time (s) 

Random Forest 0.87 0.11 0.08 0.93 45 

Support Vector Machine 0.82 0.13 0.10 0.90 128 

Artificial Neural Network 0.78 0.14 0.11 0.87 89 

 

3.3 Variable Importance Analysis 

Figure 1 illustrates the relative importance of different 

predictor variables in the Random Forest model for soil 

organic carbon prediction. Spectral bands in the near-infrared 

and shortwave infrared regions showed the highest 

importance, followed by topographic variables such as 

elevation and slope. The Normalized Difference Vegetation 

Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) 

also contributed significantly to model performance.

 

 
 

Fig 1: Variable Importance for Soil Organic Carbon Prediction using Random Forest 

 

3.4 Spatial Distribution Maps 

High-resolution soil property maps were generated using the 

best-performing models (Figure 2). The soil organic carbon 

map revealed distinct spatial patterns with higher values in 

the northern and western parts of the study area, 

corresponding to areas with better drainage and organic 

matter inputs. Lower SOC values were observed in the 

central region, likely due to intensive cultivation and reduced 

organic inputs. 

 

3.5 Model Validation and Accuracy Assessment 

Cross-validation results demonstrated consistent 

performance across different subsets of the data. The Random 

Forest model showed stable predictions with minimal bias, 

while SVM and ANN exhibited slightly higher variability. 

Spatial autocorrelation analysis indicated that model 

residuals were randomly distributed, confirming the 

adequacy of the predictive models. 

 

4. Discussion 

4.1 Effectiveness of Machine Learning Approaches 

The superior performance of Random Forest over other 

algorithms aligns with previous studies in digital soil 

mapping [31]. RF's ability to handle high-dimensional data, 

non-linear relationships, and feature interactions makes it 

particularly suitable for soil property prediction. The 

ensemble nature of RF reduces overfitting and provides 

robust predictions even with limited training data [32]. 

Support Vector Machines demonstrated competitive 

performance, particularly for soil texture classification where 

discrete boundaries are important. The kernel-based approach 

of SVM effectively captures complex decision boundaries in 

high-dimensional feature space [33]. However, SVM's 

computational complexity increases significantly with large 

datasets, limiting its scalability. 

Artificial Neural Networks showed moderate performance 

but required careful tuning to prevent overfitting. The black-

box nature of ANNs makes interpretation challenging, which 

is a significant limitation for soil science applications where 

understanding predictor-response relationships is crucial [34]. 

 

4.2 Role of Remote Sensing Variables 

Near-infrared and shortwave infrared spectral bands emerged 

as the most important predictors for soil organic carbon. 

These spectral regions are sensitive to organic matter content, 

moisture, and mineral composition [35]. The high correlation 

between spectral reflectance and soil properties demonstrates 

the effectiveness of satellite-based monitoring for large-scale 

soil mapping. 

Vegetation indices contributed significantly to model 

performance by providing information about plant vigor and 

biomass, which are closely related to soil fertility and organic 

matter content [36]. The inclusion of multiple spectral indices 

enhanced model robustness and reduced the impact of 

atmospheric and illumination variations. 
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4.3 Importance of Topographic Variables 

Topographic attributes derived from digital elevation models 

proved crucial for soil property prediction. Elevation and 

slope influenced soil formation processes, water movement, 

and erosion patterns [37]. The topographic wetness index 

captured soil moisture variations, which directly affect 

organic matter decomposition and nutrient availability [38]. 

The integration of topographic variables improved prediction 

accuracy by 15-20%, highlighting the importance of terrain 

analysis in digital soil mapping. This finding emphasizes the 

need for comprehensive environmental characterization 

beyond spectral information alone [39]. 

 

4.4 Implications for Precision Agriculture 

The high-resolution soil property maps generated in this 

study provide valuable information for precision agriculture 

applications. Farmers can use these maps to optimize 

fertilizer application, select appropriate crop varieties, and 

implement site-specific management practices. The spatial 

variability revealed in soil organic carbon distribution 

indicates opportunities for targeted soil improvement 

strategies [40]. 

The cost-effectiveness of satellite-based soil mapping 

compared to traditional field surveys makes this approach 

particularly attractive for large-scale implementation. 

Regular monitoring using satellite imagery can track 

temporal changes in soil properties and support adaptive 

management decisions [41]. 

 

4.5 Limitations and Future Research 

Several limitations should be acknowledged in this study. 

The focus on surface soil properties (0-15 cm) may not 

capture subsurface variations that influence crop production. 

Future research should investigate depth-specific mapping 

using advanced sensors and modeling techniques [42]. 

The temporal aspect of soil property variation was not fully 

addressed in this study. Seasonal changes in soil conditions, 

particularly moisture and organic matter dynamics, require 

multi-temporal analysis for comprehensive characterization 
[43]. Integration of time-series satellite data could improve 

prediction accuracy and provide insights into soil temporal 

dynamics. 

The generalizability of the developed models to other regions 

and soil types requires further validation. Transfer learning 

approaches and domain adaptation techniques could facilitate 

model application across different geographical contexts [44]. 

 

5. Conclusion 

This study successfully demonstrated the effectiveness of 

integrating remote sensing data with machine learning 

algorithms for digital soil mapping. Random Forest emerged 

as the most accurate algorithm for soil organic carbon 

prediction, achieving R² = 0.87 and providing reliable spatial 

estimates across the study area. The integration of 

multispectral satellite imagery, topographic variables, and 

advanced modeling techniques enabled high-resolution 

mapping of soil properties at landscape scale. 

Key findings include: (1) Near-infrared and shortwave 

infrared spectral bands are the most important predictors for 

soil organic carbon; (2) Topographic variables significantly 

enhance prediction accuracy; (3) Random Forest outperforms 

other machine learning algorithms for soil property 

prediction; (4) High-resolution soil maps can support 

precision agriculture applications. 

The developed methodology provides a robust framework for 

large-scale soil characterization that can be adapted to 

different regions and soil types. The cost-effectiveness and 

scalability of this approach make it particularly suitable for 

supporting sustainable agriculture and environmental 

management in developing countries. 

Future research should focus on integrating multi-temporal 

satellite data, exploring deep learning approaches, and 

developing operational systems for real-time soil monitoring. 

The continued advancement of satellite sensor technology 

and machine learning algorithms will further enhance the 

capabilities of digital soil mapping for supporting global food 

security and environmental sustainability. 

 

6. References 

1. McBratney AB, Santos MM, Minasny B. On digital soil 

mapping. Geoderma. 2003;117(1-2):3-52. 

2. Lagacherie P, McBratney AB, Voltz M. Digital soil 

mapping: an introductory perspective. Amsterdam: 

Elsevier; c2007. 

3. Minasny B, McBratney AB. Digital soil mapping: A 

brief history and some lessons. Geoderma. 

2016;264:301-311. 

4. Mulder VL, de Bruin S, Schaepman ME, Mayr TR. The 

use of remote sensing in soil and terrain mapping—A 

review. Geoderma. 2011;162(1-2):1-19. 

5. Nocita M, Stevens A, van Wesemael B, et al. Soil 

spectroscopy: An alternative to wet chemistry for soil 

monitoring. Adv Agron. 2015;132:139-159. 

6. Wadoux AM, Minasny B, McBratney AB. Machine 

learning for digital soil mapping: Applications, 

challenges and suggested solutions. Earth Sci Rev. 

2020;210:103359. 

7. Were K, Bui DT, Dick ØB, Singh BR. A comparative 

assessment of support vector regression, artificial neural 

networks, and random forests for predicting and 

mapping soil organic carbon stocks across an 

Afromontane landscape. Ecol Indic. 2015;52:394-403. 

8. Breiman L. Random forests. Mach Learn. 2001;45(1):5-

32. 

9. Vapnik V. The nature of statistical learning theory. New 

York: Springer-Verlag; 1995. 

10. Hengl T, Heuvelink GB, Kempen B, et al. Mapping soil 

properties of Africa at 250 m resolution: Random forests 

significantly improve current predictions. PLoS One. 

2015;10(6):e0125814. 

11. Ladha JK, Dawe D, Pathak H, et al. How extensive are 

yield declines in long-term rice–wheat experiments in 

Asia? Field Crops Res. 2003;81(2-3):159-180. 

12. Singh B, Sharma RK, Kaur J, et al. Assessment of the 

soil organic pool changes in Punjab, India. Appl Soil 

Ecol. 2009;41(1):1-10. 

13. Bhattacharyya T, Pal DK, Mandal C, Velayutham M. 

Organic carbon stock in Indian soils and their 

geographical distribution. Curr Sci. 2000;79(5):655-660. 

14. Gupta RK, Rao DLN, Reddy KS, Srinivasa Rao C. 

Nutrient management in Indian agriculture: Current 

scenario and future directions. Curr Sci. 

2006;91(10):1330-1340. 

15. Webster R, Oliver MA. Geostatistics for environmental 

scientists. 2nd ed. Chichester: John Wiley & Sons; 

c2007. 

16. Black CA, Evans DD, White JL, Ensminger LE, Clark 

FE. Methods of soil analysis. Part 1. Physical and 



Journal of Soil Future Research www.soilfuturejournal.com  

 
    10 | P a g e  

 

mineralogical properties. Madison: American Society of 

Agronomy; 1965. 

17. Nelson DW, Sommers LE. Total carbon, organic carbon, 

and organic matter. In: Page AL, editor. Methods of soil 

analysis, Part 2. Madison: American Society of 

Agronomy; 1982. p. 539-579. 

18. Jackson ML. Soil chemical analysis: Advanced course. 

Madison: University of Wisconsin; 1973. 

19. Drusch M, Del Bello U, Carlier S, et al. Sentinel-2: 

ESA's optical high-resolution mission for GMES 

operational services. Remote Sens Environ. 

2012;120:25-36. 

20. Roy DP, Wulder MA, Loveland TR, et al. Landsat-8: 

Science and product vision for terrestrial global change 

research. Remote Sens Environ. 2014;145:154-172. 

21. Müller-Wilm U, Louis J, Richter R, Gascon F, Niezette 

M. Sentinel-2 level 2A prototype processor: 

Architecture, algorithms and first results. Proc SPIE. 

2013;8889:88890G. 

22. Huete AR. A soil-adjusted vegetation index (SAVI). 

Remote Sens Environ. 1988;25(3):295-309. 

23. Conrad O, Bechtel B, Bock M, et al. System for 

automated geoscientific analyses (SAGA) v. 2.1.4. 

Geosci Model Dev. 2015;8(7):1991-2007. 

24. Wilson JP, Gallant JC. Terrain analysis: Principles and 

applications. New York: John Wiley & Sons; c2000. 

25. Rajeevan M, Bhate J, Jaswal AK. Analysis of variability 

and trends of extreme rainfall events over India using 

104 years of gridded daily rainfall data. Geophys Res 

Lett. 2008;35(18):L18707. 

26. Liaw A, Wiener M. Classification and regression by 

randomForest. R News. 2002;2(3):18-22. 

27. Cristianini N, Shawe-Taylor J. An introduction to 

support vector machines and other kernel-based learning 

methods. Cambridge: Cambridge University Press; 

c2000. 

28. Bishop CM. Neural networks for pattern recognition. 

Oxford: Oxford University Press; 1995. 

29. Lin LI. A concordance correlation coefficient to evaluate 

reproducibility. Biometrics. 1989;45(1):255-268. 

30. Cohen J. A coefficient of agreement for nominal scales. 

Educ Psychol Meas. 1960;20(1):37-46. 

31. Nussbaum M, Spiess K, Baltensweiler A, et al. 

Evaluation of digital soil mapping approaches with large 

sets of environmental covariates. Soil. 2018;4(1):1-22. 

32. Grimm R, Behrens T, Märker M, Elsenbeer H. Soil 

organic carbon concentrations and stocks on Barro 

Colorado Island—Digital soil mapping using Random 

Forests analysis. Geoderma. 2008;146(1-2):102-113. 

33. Mountrakis G, Im J, Ogole C. Support vector machines 

in remote sensing: A review. ISPRS J Photogramm 

Remote Sens. 2011;66(3):247-259. 

34. Taghizadeh-Mehrjardi R, Nabiollahi K, Kerry R. Digital 

mapping of soil organic carbon at multiple depths using 

different data mining techniques in Baneh region, Iran. 

Geoderma. 2016;266:98-110. 

35. Stenberg B, Viscarra Rossel RA, Mouazen AM, 

Wetterlind J. Visible and near infrared spectroscopy in 

soil science. Adv Agron. 2010;107:163-215. 

36. Pettorelli N, Vik JO, Mysterud A, et al. Using the 

satellite-derived NDVI to assess ecological responses to 

environmental change. Trends Ecol Evol. 

2005;20(9):503-510. 

37. Jenny H. Factors of soil formation: A system of 

quantitative pedology. New York: McGraw-Hill; 1941. 

38. Beven KJ, Kirkby MJ. A physically based, variable 

contributing area model of basin hydrology. Hydrol Sci 

Bull. 1979;24(1):43-69. 

39. Thompson JA, Bell JC, Butler CA. Digital elevation 

model resolution: Effects on terrain attribute calculation 

and quantitative soil-landscape modeling. Geoderma. 

2001;100(1-2):67-89. 

40. Pierce FJ, Nowak P. Aspects of precision agriculture. 

Adv Agron. 1999;67:1-85. 

41. Mulla DJ. Twenty five years of remote sensing in 

precision agriculture: Key advances and remaining 

knowledge gaps. Biosyst Eng. 2013;114(4):358-371. 

42. Viscarra Rossel RA, Adamchuk VI, Sudduth KA, 

McKenzie NJ, Lobsey C. Proximal soil sensing: An 

effective approach for soil measurements in space and 

time. Adv Agron. 2011;113:243-291. 

43. Grunwald S, Thompson JA, Boettinger JL. Digital soil 

mapping and modeling at continental scales: Finding 

solutions for global issues. Soil Sci Soc Am J. 

2011;75(4):1201-1213. 

44. Padarian J, Minasny B, McBratney AB. Transfer 

learning to localise a continental soil vis-NIR calibration 

model. Geoderma. 2019;340:279-288. 


