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1. Introduction

Soil mapping has traditionally relied on conventional field surveys and laboratory analyses, which are time-consuming, labor-
intensive, and costly ™. The increasing demand for detailed soil information to support precision agriculture, environmental
monitoring, and sustainable land management has driven the development of digital soil mapping (DSM) techniques . DSM
represents a paradigm shift from traditional soil mapping approaches by utilizing quantitative relationships between soil
properties and environmental variables [,

Remote sensing technology has revolutionized soil science by providing synoptic coverage, temporal monitoring capabilities,
and cost-effective data acquisition 1. Satellite-based multispectral and hyperspectral sensors can detect soil properties through
spectral reflectance patterns, particularly in the visible, near-infrared, and shortwave infrared regions 1. The integration of
remote sensing data with machine learning algorithms has opened new avenues for accurate and efficient soil property prediction
(61, Machine learning techniques have demonstrated superior performance in handling complex, non-linear relationships between
soil properties and environmental predictors . Among various algorithms, Random Forest, Support Vector Machines, and
Artificial Neural Networks have shown particular promise in soil mapping applications [ °l. These algorithms can effectively
integrate multiple data sources including satellite imagery, topographic attributes, climatic variables, and existing soil maps [,
The Indo-Gangetic Plains represent one of the world's most important agricultural regions, supporting over 40% of India's
population M1, However, intensive agricultural practices have led to significant soil degradation, making accurate soil mapping
crucial for sustainable land management 2, Previous studies in this region have been limited by sparse sampling and
conventional mapping approaches 11,
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This research aims to develop and evaluate a comprehensive
digital soil mapping framework using remote sensing and
machine learning techniques. The specific objectives include:
(1) developing predictive models for key soil properties using
multispectral satellite data, (2) comparing the performance of
different machine learning algorithms, (3) assessing the
contribution of various environmental variables to soil
prediction accuracy, and (4) generating high-resolution soil
property maps for precision agriculture applications.

2. Materials and Methods

2.1 Study Area

The study was conducted in the Haryana state of India,
covering an area of 5000 hectares within the Indo-Gangetic
Plains (coordinates: 29°30'N to 30°15'N and 76°45E to
77°30'E). The region is characterized by alluvial soils, semi-
arid climate, and intensive wheat-rice cropping systems 141,
The terrain is relatively flat with elevation ranging from 200
to 250 meters above sea level.

2.2 Soil Sampling and Laboratory Analysis

A stratified random sampling approach was employed to
collect soil samples from 450 georeferenced locations across
the study area . Sampling sites were distributed to ensure
representative coverage of different land uses, topographic
positions, and management practices. Soil samples were
collected from 0-15 cm depth during the post-harvest period
(May 2023) to minimize vegetation interference.

Laboratory analyses were conducted following standard
protocols €1, Soil organic carbon (SOC) was determined
using the Walkley-Black method, soil pH using a 1:2.5 soil-
water suspension, and soil texture using the hydrometer
method 71, Additional parameters including available
nitrogen, phosphorus, and potassium were analyzed using
established procedures 8],

2.3 Remote Sensing Data Acquisition

Multispectral satellite imagery was acquired from multiple
sensors to ensure comprehensive spectral coverage and
temporal representation. Sentinel-2 Level-2A products with
10-20m spatial resolution were obtained for the study period,
providing 13 spectral bands from visible to shortwave
infrared regions *°l. Landsat-8 OLI/TIRS data with 30m
resolution supplemented the Sentinel-2 dataset, particularly
for thermal infrared information [,

All satellite images were preprocessed including atmospheric
correction, geometric rectification, and cloud masking using
the Sen2Cor and LEDAPS algorithms 21, Spectral indices
relevant to soil properties were calculated, including the
Normalized Difference Vegetation Index (NDVI), Soil
Adjusted Vegetation Index (SAVI), and various soil-specific
indices 22,
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2.4 Environmental Variables

Topographic attributes were derived from the 30m SRTM
Digital Elevation Model (DEM) using SAGA GIS 2,
Calculated parameters included elevation, slope, aspect,
curvature, topographic wetness index (TWI), and terrain
ruggedness index (TRI) 4. Climate variables including
temperature and precipitation data were obtained from the
India Meteorological Department and interpolated to the
study area 21,

2.5 Machine Learning Algorithms

Three machine learning algorithms were implemented and

compared for soil property prediction:

e Random Forest (RF): An ensemble method combining
multiple decision trees with bootstrap aggregating [?6].
RF parameters were optimized using cross-validation,
with the number of trees set to 500 and the number of
variables tried at each split determined through grid
search.

e Support Vector Machine (SVM): A Kkernel-based
algorithm using radial basis function (RBF) for non-
linear classification and regression #7, Hyperparameters
including C (regularization) and y (kernel coefficient)
were optimized using 10-fold cross-validation.

o Artificial Neural Network (ANN): A multi-layer
perceptron with one hidden layer containing 10-15
neurons [8.  The network was trained using
backpropagation with sigmoid activation functions and
optimized to prevent overfitting.

2.6 Model Development and Validation

The dataset was randomly split into training (70%) and
testing (30%) subsets. Model performance was evaluated
using multiple metrics including coefficient of determination
(R?), root mean square error (RMSE), mean absolute error
(MAE), and Lin's concordance correlation coefficient (CCC)
for continuous variables . Classification accuracy was
assessed using overall accuracy, kappa coefficient, and
confusion matrices [,

3. Results

3.1 Soil Property Statistics

Descriptive statistics for soil properties are presented in Table
1. Soil organic carbon showed moderate variability (CV =
34%) with values ranging from 0.3% to 1.8%. Soil pH
exhibited low variability (CV = 8%) with most samples
falling within the neutral to slightly alkaline range. Clay
content varied significantly across the study area (CV =
45%), reflecting the heterogeneous nature of alluvial
deposits.

Table 1: Descriptive Statistics of Soil Properties (n = 450)

Property Unit Mean Median SD CV (%) | Min | Max | Skewness
SOC % 0.89 0.85 0.30 34 031 | 1.84 0.65
pH - 7.8 7.9 0.6 8 6.2 9.1 -0.23
Clay % 28.5 27.2 12.8 45 8.4 58.7 0.34
Sand % 45.2 44.8 18.6 41 123 | 789 0.18
Silt % 26.3 25.7 9.4 36 9.8 52.1 0.41
Available N kag/ha 142 138 48 34 62 265 0.29
Available P kg/ha 18.6 16.8 8.9 48 4.2 42.3 0.87
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3.2 Machine Learning Model Performance

Table 2 presents the comparative performance of the three
machine learning algorithms for soil organic carbon
prediction. Random Forest achieved the highest accuracy
with R? = 0.87 and RMSE = 0.11%, followed by SVM (R? =

www.soilfuturejournal.com

0.82, RMSE =0.13%) and ANN (R2=0.78, RMSE = 0.14%).
The superior performance of RF can be attributed to its ability
to handle non-linear relationships and reduce overfitting
through ensemble averaging.

Table 2: Performance Comparison of Machine Learning Algorithms for Soil Organic Carbon Prediction

Algorithm R2 RMSE (%) | MAE (%) | CCC | Training Time (s)
Random Forest 0.87 0.11 0.08 0.93 45
Support Vector Machine 0.82 0.13 0.10 0.90 128
Artificial Neural Network | 0.78 0.14 0.11 0.87 89

3.3 Variable Importance Analysis

Figure 1 illustrates the relative importance of different
predictor variables in the Random Forest model for soil
organic carbon prediction. Spectral bands in the near-infrared

importance, followed by topographic variables such as
elevation and slope. The Normalized Difference Vegetation
Index (NDVI) and Soil Adjusted Vegetation Index (SAVI)
also contributed significantly to model performance.

and shortwave infrared regions showed the highest
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Fig 1: Variable Importance for Soil Organic Carbon Prediction using Random Forest

3.4 Spatial Distribution Maps

High-resolution soil property maps were generated using the
best-performing models (Figure 2). The soil organic carbon
map revealed distinct spatial patterns with higher values in
the northern and western parts of the study area,
corresponding to areas with better drainage and organic
matter inputs. Lower SOC values were observed in the
central region, likely due to intensive cultivation and reduced
organic inputs.

3.5 Model Validation and Accuracy Assessment
Cross-validation results demonstrated consistent
performance across different subsets of the data. The Random
Forest model showed stable predictions with minimal bias,
while SVM and ANN exhibited slightly higher variability.
Spatial autocorrelation analysis indicated that model
residuals were randomly distributed, confirming the
adequacy of the predictive models.

4. Discussion

4.1 Effectiveness of Machine Learning Approaches

The superior performance of Random Forest over other
algorithms aligns with previous studies in digital soil
mapping B4, RF's ability to handle high-dimensional data,
non-linear relationships, and feature interactions makes it
particularly suitable for soil property prediction. The
ensemble nature of RF reduces overfitting and provides
robust predictions even with limited training data (32,

Support  Vector Machines demonstrated competitive
performance, particularly for soil texture classification where
discrete boundaries are important. The kernel-based approach
of SVM effectively captures complex decision boundaries in
high-dimensional feature space [®. However, SVM's
computational complexity increases significantly with large
datasets, limiting its scalability.

Artificial Neural Networks showed moderate performance
but required careful tuning to prevent overfitting. The black-
box nature of ANNs makes interpretation challenging, which
is a significant limitation for soil science applications where
understanding predictor-response relationships is crucial 34,

4.2 Role of Remote Sensing Variables

Near-infrared and shortwave infrared spectral bands emerged
as the most important predictors for soil organic carbon.
These spectral regions are sensitive to organic matter content,
moisture, and mineral composition B, The high correlation
between spectral reflectance and soil properties demonstrates
the effectiveness of satellite-based monitoring for large-scale
soil mapping.

Vegetation indices contributed significantly to model
performance by providing information about plant vigor and
biomass, which are closely related to soil fertility and organic
matter content 381, The inclusion of multiple spectral indices
enhanced model robustness and reduced the impact of
atmospheric and illumination variations.
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4.3 Importance of Topographic Variables

Topographic attributes derived from digital elevation models
proved crucial for soil property prediction. Elevation and
slope influenced soil formation processes, water movement,
and erosion patterns 71, The topographic wetness index
captured soil moisture variations, which directly affect
organic matter decomposition and nutrient availability (381,
The integration of topographic variables improved prediction
accuracy by 15-20%, highlighting the importance of terrain
analysis in digital soil mapping. This finding emphasizes the
need for comprehensive environmental characterization
beyond spectral information alone 9,

4.4 Implications for Precision Agriculture

The high-resolution soil property maps generated in this
study provide valuable information for precision agriculture
applications. Farmers can use these maps to optimize
fertilizer application, select appropriate crop varieties, and
implement site-specific management practices. The spatial
variability revealed in soil organic carbon distribution
indicates opportunities for targeted soil improvement
strategies [,

The cost-effectiveness of satellite-based soil mapping
compared to traditional field surveys makes this approach
particularly attractive for large-scale implementation.
Regular monitoring using satellite imagery can track
temporal changes in soil properties and support adaptive
management decisions 41,

4.5 Limitations and Future Research

Several limitations should be acknowledged in this study.
The focus on surface soil properties (0-15 cm) may not
capture subsurface variations that influence crop production.
Future research should investigate depth-specific mapping
using advanced sensors and modeling techniques 2.

The temporal aspect of soil property variation was not fully
addressed in this study. Seasonal changes in soil conditions,
particularly moisture and organic matter dynamics, require
multi-temporal analysis for comprehensive characterization
431, Integration of time-series satellite data could improve
prediction accuracy and provide insights into soil temporal
dynamics.

The generalizability of the developed models to other regions
and soil types requires further validation. Transfer learning
approaches and domain adaptation techniques could facilitate
model application across different geographical contexts 14,

5. Conclusion

This study successfully demonstrated the effectiveness of
integrating remote sensing data with machine learning
algorithms for digital soil mapping. Random Forest emerged
as the most accurate algorithm for soil organic carbon
prediction, achieving R2 = 0.87 and providing reliable spatial
estimates across the study area. The integration of
multispectral satellite imagery, topographic variables, and
advanced modeling techniques enabled high-resolution
mapping of soil properties at landscape scale.

Key findings include: (1) Near-infrared and shortwave
infrared spectral bands are the most important predictors for
soil organic carbon; (2) Topographic variables significantly
enhance prediction accuracy; (3) Random Forest outperforms
other machine learning algorithms for soil property
prediction; (4) High-resolution soil maps can support
precision agriculture applications.
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The developed methodology provides a robust framework for
large-scale soil characterization that can be adapted to
different regions and soil types. The cost-effectiveness and
scalability of this approach make it particularly suitable for
supporting sustainable agriculture and environmental
management in developing countries.

Future research should focus on integrating multi-temporal
satellite data, exploring deep learning approaches, and
developing operational systems for real-time soil monitoring.
The continued advancement of satellite sensor technology
and machine learning algorithms will further enhance the
capabilities of digital soil mapping for supporting global food
security and environmental sustainability.
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