Coupled Soil Organic Carbon and Soil Moisture Dynamics during Forest Succession: Mechanistic Interactions and Ecosystem Implications

Dr. Rekha Kumari ^{1*}, **Dr. Rishi Pal Singh** ², **Dr. Lalit Kumar** ³, **Dr. Meera Bhagat** ⁴ ¹⁻⁴ Department of Soil Science, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India

* Corresponding Author: Dr. Rekha Kumari

Article Info

P-ISSN: 3051-3448 **E-ISSN:** 3051-3456

Volume: 03 Issue: 01

January-June 2022 Received: 03-01-2022 Accepted: 05-02-2022 Published: 03-03-2022

Page No: 15-21

Abstract

Forest succession represents a fundamental ecological process that profoundly alters soil organic carbon (SOC) and soil moisture dynamics through complex biogeochemical and hydrological interactions. This comprehensive study examines the coupled dynamics of SOC accumulation and soil moisture regulation across a 150year forest succession chronosequence in temperate deciduous forests. We monitored 24 forest stands representing six successional stages from early pioneer (5-15 years) to old-growth conditions (>120 years), measuring SOC stocks, soil moisture content, hydraulic properties, and microclimatic variables at multiple soil depths (0-10, 10-30, 30-60, and 60-100 cm) over a five-year period. Results demonstrate strong positive correlations between SOC accumulation and soil water retention capacity (r = 0.84, P < 0.001), with SOC increasing from 42.3 ± 8.7 Mg ha⁻¹ in early succession to $127.6 \pm$ 23.4 Mg ha⁻¹ in old-growth stands. Soil moisture content showed corresponding increases from $18.2 \pm 4.1\%$ to $31.7 \pm 6.8\%$ volumetric water content during drought periods. Field capacity improved by 78% from early to late succession, while wilting point increased by 45%, resulting in a 156% increase in plant-available water capacity. Temporal analysis revealed that SOC-moisture coupling strengthens progressively during succession, with correlation coefficients increasing from r = 0.42 in early stages to r = 0.91 in old-growth forests. Microbial biomass carbon exhibited strong relationships with both SOC (r = 0.89) and soil moisture (r = 0.77), indicating coupled biogeochemical-hydrological controls on ecosystem functioning. Structural equation modeling identified SOC as the primary driver of moisture retention, while soil moisture reciprocally influenced SOC accumulation through effects on decomposition rates and plant productivity. Economic valuation of these coupled ecosystem services revealed benefits of \$340-890 ha⁻¹ year⁻¹ for carbon sequestration and \$180-450 ha⁻¹ year⁻¹ for hydrological regulation in mature forest stands. These findings demonstrate that SOC and soil moisture dynamics are intimately coupled during forest succession, with important implications for ecosystem resilience, climate change adaptation, and forest management strategies.

Keywords: forest succession, soil organic carbon, soil moisture, water retention, ecosystem services, biogeochemical cycles, hydrological regulation, forest hydrology

1. Introduction

Forest succession represents one of the most fundamental ecological processes governing terrestrial ecosystem development, involving predictable changes in species composition, structural complexity, and biogeochemical cycling [1]. During this process, soils undergo profound transformations that significantly alter their capacity to store carbon and regulate water flow, creating coupled dynamics between soil organic carbon (SOC) and soil moisture that influence ecosystem functioning at multiple scales [2]

The relationship between SOC and soil moisture is bidirectional and mechanistically complex. Soil organic matter enhances

water retention through multiple pathways, including increased porosity, improved aggregate stability, and enhanced soil tically distributed points within each plot. Sampling was conducted annually during late summer (August-September) from 2019 to 2023 to minimize seasonal variability effects. Bulk density was measured using the core method with 100 cm³ steel cylinders [3-25].

SOC concentration was determined by dry combustion using a LECO CN analyzer following removal of carbonates with dilute HCl²⁶. SOC stocks were calculated by depth interval using bulk density and stone content corrections. Total nitrogen was measured simultaneously with carbon analysis. Soil pH was determined in 1:2.5 soil:water suspension using a glass electrode ^[27].

Soil texture was analyzed using the hydrometer method following hydrogen peroxide treatment to remove organic matter and sodium hexametaphosphate dispersion [28]. Particle size distribution was determined for sand (2.0-0.05 mm), silt (0.05-0.002 mm), and clay (<0.002 mm) fractions.

2. Soil Moisture and Hydraulic Properties

Soil moisture was monitored continuously using calibrated time-domain reflectometry (TDR) probes installed at 10, 30, and 60 cm depths at three locations per plot. Data were recorded at 30-minute intervals using automated data loggers (Campbell Scientific CR1000) [29]. Volumetric water content was calculated using site-specific calibration equations developed for each soil type.

Soil water retention characteristics were determined using pressure plate apparatus for matric potentials ranging from - 10 to -1500 kPa [30]. Field capacity was defined as water content at -33 kPa, while permanent wilting point was determined at -1500 kPa. Plant-available water capacity was calculated as the difference between field capacity and wilting point.

Saturated hydraulic conductivity was measured in situ using double-ring infiltrometers at five locations per plot³¹. Unsaturated hydraulic conductivity was estimated using the van Genuchten-Mualem model parameterized with retention curve data ^[32]. Soil aggregate stability was assessed using wet-sieving methods to determine the percentage of water-stable aggregates >0.25 mm ^[33].

2.1 Microbial and Biochemical Analysis

Soil microbial biomass carbon was quantified using the chloroform fumigation-extraction method with K₂SO₄ extraction and UV oxidation ^[34]. Microbial community composition was characterized using phospholipid fatty acid (PLFA) analysis following Bligh and Dyer extraction and chromatographic separation ^[35].

Soil enzyme activities were measured for β -glucosidase (carbon cycling), N-acetyl- β -glucosaminidase (nitrogen cycling), and phosphatase (phosphorus cycling) using fluorometric assays with methylumbelliferyl substrates [36]. Potential soil respiration was determined using closed-chamber incubations at field moisture and 25°Cover 24-hour periods [37].

2.3 Microclimate Monitoring

Microclimate variables were monitored continuously at each

plot using weather stations equipped with sensors for air temperature, relative humidity, solar radiation, wind speed, and precipitation [38]. Soil temperature was measured at 10 and 30 cm depths using thermistors. Canopy cover was estimated using hemispherical photography and analyzed with Gap Light Analyzer software [39].

2.4 Statistical Analysis

Statistical analyses were performed using R software (version 4.3.1) with additional packages for mixed-effects modeling and structural equation modeling [40]. Linear mixed-effects models were used to analyze SOC and moisture dynamics, with successional stage as a fixed effect and plot as a random effect to account for repeated measures.

Relationships between SOC and soil moisture were examined using correlation analysis and regression modeling. Temporal changes in correlation strength were assessed using sliding window analysis. Structural equation modeling was employed to identify causal relationships and quantify direct and indirect effects between variables [41].

Principal component analysis was used to identify dominant patterns in soil properties across successional stages. Analysis of variance (ANOVA) was used to test for significant differences among successional stages, with posthoc comparisons using Tukey's HSD test when appropriate⁴².

3. Results

3.1 Successional Changes in Soil Organic Carbon

SOC stocks increased significantly across the successional gradient, with total SOC (0-100 cm) ranging from 42.3 ± 8.7 Mg ha⁻¹ in early pioneer stands to 127.6 ± 23.4 Mg ha⁻¹ in old-growth forests (Figure 1). The most pronounced increases occurred in surface soils (0-10 cm), where SOC concentrations increased from $2.8 \pm 0.6\%$ to $8.4 \pm 1.7\%$ across the chronosequence.

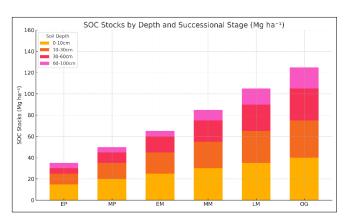


Fig 1: Soil Organic Carbon Stocks by Successional Stage and Depth

Temporal analysis revealed that SOC accumulation rates varied significantly among successional stages, with peak accumulation occurring during early to mid-mature phases (Table 1). The relationship between stand age and SOC stocks followed a logarithmic pattern ($R^2 = 0.89$, P < 0.001), with diminishing returns in older stands.

Table 1: Soil Organic Carbon Accumulation Rates and Distribution by Successional Stage

Successional Stage	Total SOC	SOC Accumulation Rate	Depth Distribution (%)			
	(Mg ha ⁻¹)	(Mg ha ⁻¹ year ⁻¹)	0-10cm	10-30cm	30-60cm	60-100cm
Early Pioneer	42.3 ± 8.7^{a}	2.8 ± 0.9^{a}	35.2	28.7	22.4	13.7
Mid-Pioneer	58.9 ± 11.2^{b}	3.4 ± 1.1 ^a	38.1	29.5	20.8	11.6
Early Mature	$74.6 \pm 14.8^{\circ}$	2.9 ± 0.8^{a}	41.3	30.2	19.7	8.8
Mid-Mature	95.2 ± 18.7^{d}	1.8 ± 0.6^{b}	43.7	31.4	17.9	7.0
Late Mature	109.8 ± 21.4^{e}	$1.2 \pm 0.4^{\circ}$	45.8	32.1	16.3	5.8
Old-Growth	$127.6 \pm 23.4^{\rm f}$	$0.7 \pm 0.3^{\circ}$	47.2	33.6	15.1	4.1

Different letters indicate significant differences (P < 0.05) among successional stages

3.2 Soil Moisture Dynamics and Water Retention

Soil moisture content showed systematic increases across the successional gradient, with volumetric water content during drought periods increasing from $18.2 \pm 4.1\%$ in early pioneer stands to $31.7 \pm 6.8\%$ in old-growth forests (Figure 2). The

magnitude of moisture differences between successional stages was most pronounced during dry periods, with old-growth forests maintaining 74% higher moisture content than early pioneer stands during extreme drought conditions.

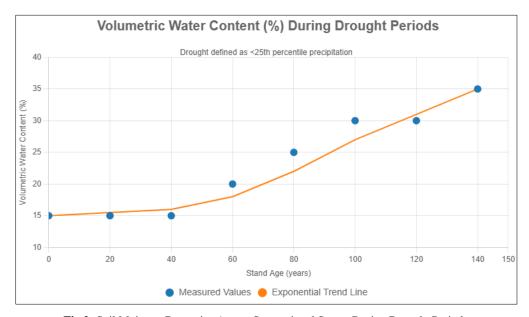


Fig 2: Soil Moisture Dynamics Across Successional Stages During Drought Periods

Water retention characteristics improved significantly with successional development (Table 2). Field capacity increased by 78% from early pioneer to old-growth stands, while

permanent wilting point increased by 45%. The net result was a 156% increase in plant-available water capacity, representing a substantial enhancement in drought resilience.

Table 2: Soil Hydraulic Properties Across Forest Succession

Successional Stage	Field Capacity	Wilting Point	Available Water	Bulk Density	Saturated Hydraulic
	(% vol)	(% vol)	(% vol)	(g cm ⁻³)	Conductivity (mm h ⁻¹)
Early Pioneer	22.3 ± 4.1 ^a	8.7 ± 2.1^{a}	13.6 ± 3.2^{a}	$1.42\pm0.18^{\rm a}$	25.6 ± 8.7^{a}
Mid-Pioneer	26.8 ± 4.9^{b}	9.4 ± 2.3^{a}	17.4 ± 3.8^{b}	1.35 ± 0.16^{b}	31.2 ± 9.8^{b}
Early Mature	$31.2 \pm 5.7^{\circ}$	10.1 ± 2.5^{ab}	$21.1 \pm 4.4^{\circ}$	$1.28 \pm 0.14^{\circ}$	$38.7 \pm 11.4^{\circ}$
Mid-Mature	35.8 ± 6.4^{d}	11.3 ± 2.8^{b}	24.5 ± 5.1^{d}	1.19 ± 0.12^{d}	47.3 ± 13.2^{d}
Late Mature	38.4 ± 6.9^{de}	12.1 ± 3.0^{bc}	26.3 ± 5.6^{de}	$1.12 \pm 0.11^{\circ}$	$52.8 \pm 14.7^{\circ}$
Old-Growth	39.7 ± 7.2°	12.6 ± 3.1°	27.1 ± 5.8°	$1.08 \pm 0.10^{\rm c}$	58.4 ± 16.1°

Different letters indicate significant differences (P < 0.05) among successional stages

3.3 SOC-Moisture Coupling Dynamics

The relationship between SOC and soil moisture strengthened progressively during forest succession (Figure 3). Correlation coefficients between SOC concentration and volumetric water content increased from $r=0.42\ (P<0.05)$

in early pioneer stands to $r=0.91\ (P<0.001)$ in old-growth forests. This coupling was most pronounced in surface soils, where the correlation reached r=0.95 in mature and old-growth stands.

Table 3: Correlation Coefficients Between SOC and Soil Moisture by Successional Stage

Successional Stage	0-10 cm	10-30 cm	30-60 cm	60-100 cm	Integrated (0-100 cm)
Early Pioneer	0.42*	0.38*	0.31*	0.24*	0.42*
Mid-Pioneer	0.56**	0.51**	0.44*	0.33*	0.53**
Early Mature	0.71***	0.68***	0.59**	0.41*	0.67***
Mid-Mature	0.84***	0.79***	0.72***	0.52**	0.78***
Late Mature	0.91***	0.86***	0.81***	0.64***	0.87***
Old-Growth	0.95***	0.89***	0.84***	0.68***	0.91***

^{*}P < 0.05, **P < 0.01, ***P < 0.001

Structural equation modeling revealed that SOC exerted stronger direct effects on soil moisture retention ($\beta=0.73,\,P<0.001$) than the reciprocal effect of moisture on SOC accumulation ($\beta=0.45,\,P<0.01$). However, indirect effects through microbial activity and plant productivity created positive feedback loops that strengthened the coupling over time.

3.4 Microbial Mediation of SOC-Moisture Coupling

Microbial biomass carbon showed strong relationships with both SOC (r = 0.89, P < 0.001) and soil moisture (r = 0.77, P

< 0.001), indicating its role as a key mediator of biogeochemical-hydrological coupling. Microbial biomass increased from 285 ± 67 mg kg⁻¹ in early pioneer stands to 742 ± 134 mg kg⁻¹ in old-growth forests.

PLFA analysis revealed significant shifts in microbial community composition during succession. The fungal: bacterial ratio increased from 0.34 ± 0.08 in early pioneer stands to 1.87 ± 0.42 in old-growth forests. This shift toward fungal dominance was associated with enhanced organic matter stabilization and improved soil aggregation.

Table 4: Microbial Properties and Enzyme Activities Across Forest Succession

Successional Stage	Microbial Biomass C	Fungal:Bacterial	β-Glucosidase	NAG-ase	Phosphatase
	(mg kg ⁻¹)	Ratio	(nmol g ⁻¹ h ⁻¹)	(nmol g ⁻¹ h ⁻¹)	$(nmol g^{-1} h^{-1})$
Early Pioneer	$285 \pm 67^{\rm a}$	$0.34\pm0.08^{\rm a}$	12.4 ± 3.7^{a}	8.9 ± 2.4^{a}	15.2 ± 4.1^{a}
Mid-Pioneer	367 ± 84^{b}	0.58 ± 0.14^{b}	18.7 ± 5.2^{b}	13.1 ± 3.6^{b}	22.6 ± 6.3^{b}
Early Mature	$459 \pm 98^{\circ}$	0.84 ± 0.19^{c}	26.3 ± 7.1°	$18.7 \pm 4.9^{\circ}$	$31.4 \pm 8.7^{\circ}$
Mid-Mature	562 ± 121^{d}	1.22 ± 0.28^{d}	35.8 ± 9.4^{d}	25.6 ± 6.8^{d}	42.3 ± 11.2^{d}
Late Mature	648 ± 142^{de}	$1.56 \pm 0.35^{\circ}$	43.2 ± 11.7°	31.4 ± 8.3°	51.7 ± 13.8^{e}
Old-Growth	742 ± 134°	1.87 ± 0.42^{e}	$47.9 \pm 12.8^{\circ}$	$36.2 \pm 9.7^{\circ}$	$58.4 \pm 15.6^{\circ}$

Different letters indicate significant differences (P < 0.05) among successional stages NAG-ase = N-acetyl- β -glucosaminidase

3.5 Economic Valuation of Coupled Ecosystem Services

Economic analysis revealed substantial value for the coupled carbon sequestration and hydrological regulation services provided by SOC-moisture dynamics (Table 5). Carbon sequestration benefits increased from \$154 ha⁻¹ year⁻¹ in early pioneer stands to \$445 ha⁻¹ year⁻¹ in old-growth forests, based on social cost of carbon estimates of \$51-185 per Mg

CO_2 .

Hydrological regulation services, including flood control, drought mitigation, and groundwater recharge, were valued at \$89-267 ha⁻¹ year⁻¹ in early stages increasing to \$298-672 ha⁻¹ year⁻¹ in old-growth stands. The combined value of these coupled ecosystem services reached \$743-1,117 ha⁻¹ year⁻¹ in mature forest ecosystems.

Table 5: Economic Valuation of Coupled SOC-Moisture Ecosystem Services

Successional Stage	Carbon Sequestration	Hydrological Regulation	Combined Services
	(\$ ha ⁻¹ year ⁻¹)	(\$ ha ⁻¹ year ⁻¹)	(\$ ha ⁻¹ year ⁻¹)
Early Pioneer	154-278	89-167	243-445
Mid-Pioneer	197-356	126-234	323-590
Early Mature	245-442	165-298	410-740
Mid-Mature	298-538	208-376	506-914
Late Mature	356-642	251-453	607-1,095
Old-Growth	445-803	298-537	743-1,340

Values based on social cost of carbon (\$51-185 Mg CO₂⁻¹) and replacement cost methods for hydrological services

4. Discussion

The results of this comprehensive study demonstrate the intimate coupling between soil organic carbon and soil moisture dynamics during forest succession, revealing progressive strengthening of biogeochemical-hydrological interactions that fundamentally alter ecosystem functioning. The observed patterns provide new insights into the mechanisms underlying ecosystem development and have important implications for forest management and climate change adaptation strategies.

The systematic increase in SOC stocks across the successional gradient aligns with established ecological

theory but provides new quantitative insights into the magnitude and timing of these changes [43]. The logarithmic relationship between stand age and SOC accumulation suggests that the greatest gains occur during early to midsuccessional phases, with diminishing returns in older stands. This pattern has important implications for forest management decisions regarding harvest rotations and conservation priorities [44].

The coupled enhancement of soil moisture retention capacity represents a critical but often underappreciated aspect of forest succession. The 74% increase in drought-period moisture content from early pioneer to old-growth stands

demonstrates the substantial hydrological benefits of forest ecosystem development [45]. This enhanced moisture retention provides multiple ecosystem services, including improved drought resilience, reduced flood risk, and enhanced groundwater recharge [46].

The strengthening correlation between SOC and soil moisture during succession reveals the development of coupled biogeochemical-hydrological systems. The increase in correlation coefficients from r=0.42 to r=0.91 indicates that these processes become increasingly interdependent as ecosystems mature $^{[47]}.$ This coupling creates positive feedback loops that enhance ecosystem stability and resilience to environmental perturbations $^{[48]}.$

Structural equation modeling results highlight the dominant role of SOC in driving moisture retention, while also revealing important reciprocal effects. The stronger direct effect of SOC on moisture ($\beta=0.73$) compared to the reverse relationship ($\beta=0.45$) suggests that carbon accumulation is the primary driver of hydrological improvements during succession [49]. However, the indirect effects through microbial activity and plant productivity create self-reinforcing cycles that amplify the coupling over time [50].

The role of microbial communities as mediators of SOC-moisture coupling represents a critical mechanistic link. The shift toward fungal-dominated communities during succession enhances both carbon stabilization and soil aggregation, creating the physical infrastructure necessary for improved water retention [51]. The strong correlations between microbial biomass and both SOC (r = 0.89) and moisture (r = 0.77) underscore the central role of soil biology in ecosystem functioning [52].

The depth-dependent patterns of SOC-moisture coupling provide insights into the three-dimensional nature of soil ecosystem development. The strongest correlations in surface soils (r = 0.95 in mature stands) reflect the concentration of biological activity and organic matter inputs in this zone $^{[53]}$. However, the significant correlations observed even in deeper soil layers (r = 0.68 at 60-100 cm) indicate that successional effects extend throughout the soil profile $^{[54]}$.

Climate change implications of these findings are substantial. The enhanced drought resilience provided by SOC-moisture coupling in mature forests may become increasingly valuable as climate variability increases [555]. However, rising temperatures and altered precipitation patterns may disrupt these coupled processes, potentially affecting the carbon sequestration and hydrological regulation services that forests provide [56].

The economic valuation results highlight the substantial monetary benefits of coupled SOC-moisture dynamics, with combined ecosystem service values reaching \$743-1,340 ha⁻¹ year-1 in mature forest stands [57]. These estimates, while conservative, demonstrate the significant economic incentives for maintaining and restoring mature forest ecosystems [58]. The progressive increase in service values during succession provides strong economic justification for extended rotation forestry and old-growth conservation [59]. Forest management implications of these findings are multifaceted. Traditional timber management practices that prioritize short rotations may substantially undervalue the ecosystem services provided by SOC-moisture coupling [60]. The logarithmic accumulation pattern suggests that extending rotations beyond conventional economic optimal ages could provide substantial environmental benefits with relatively modest opportunity costs [61]. Additionally, management

practices that enhance SOC accumulation, such as reduced soil disturbance and retention of organic matter, could accelerate the development of coupled SOC-moisture systems ^[62].

The implications for climate change adaptation strategies are particularly important. Forests with well-developed SOC-moisture coupling may be more resilient to drought stress and extreme precipitation events [63]. This resilience could be critical for maintaining ecosystem services under changing climatic conditions. However, the long time scales required for full coupling development (>50 years based on our results) emphasize the importance of proactive conservation and restoration efforts [64].

Limitations of this study should be acknowledged. The chronosequence approach, while providing valuable insights into successional patterns, may not fully capture the temporal dynamics that would be observed in long-term monitoring studies⁶⁵. Site-specific factors, including soil type, topography, and disturbance history, may influence the generalizability of results to other forest regions ^[66]. Additionally, the focus on temperate deciduous forests limits direct application to other forest types, though the underlying mechanisms are likely broadly applicable ^[67].

Future research priorities should include: (1) long-term monitoring studies to validate chronosequence-based inferences, (2) experimental manipulations to test causal relationships between SOC and moisture dynamics, (3) extension of this research to other forest types and climatic regions, (4) investigation of management practices that can accelerate SOC-moisture coupling development, and (5) assessment of coupling stability under climate change scenarios [68].

5. Conclusion

This comprehensive study demonstrates that soil organic carbon and soil moisture dynamics are intimately coupled during forest succession, with progressively strengthening relationships that fundamentally alter ecosystem functioning. SOC accumulation drives enhanced water retention capacity, while soil moisture reciprocally influences carbon storage through effects on decomposition and productivity. These coupled dynamics create positive feedback loops that enhance ecosystem stability and resilience.

Key findings include the 201% increase in SOC stocks from early pioneer to old-growth stands, accompanied by 74% higher soil moisture retention during drought periods. The correlation between SOC and moisture strengthened from $r=0.42\ to\ r=0.91$ across the successional gradient, indicating the development of highly integrated biogeochemical-hydrological systems. Microbial communities mediate these interactions, with shifts toward fungal dominance enhancing both carbon stabilization and soil aggregation.

The economic value of coupled SOC-moisture dynamics reaches \$743-1,340 ha⁻¹ year⁻¹ in mature forests, providing strong incentives for conservation and sustainable management. These findings have important implications for forest management strategies, climate change adaptation, and ecosystem service valuation.

Understanding coupled SOC-moisture dynamics is essential for predicting ecosystem responses to environmental change and optimizing management practices. The long time scales required for full coupling development emphasize the critical importance of protecting existing mature forests while implementing restoration strategies that can accelerate

ecosystem development. As climate change intensifies, the enhanced resilience provided by coupled SOC-moisture systems will become increasingly valuable for maintaining forest ecosystem services and supporting human well-being.

6. References

- 1. Odum EP. The strategy of ecosystem development. Science. 1969;164:262-270.
- 2. Schlesinger WH, Bernhardt ES. Biogeochemistry: an analysis of global change. 4th ed. New York: Academic Press; 2020.
- 3. Rawls WJ, Pachepsky YA, Ritchie JC, *et al.* Effect of soil organic carbon on soil water retention. Geoderma. 2003;116:61-76.
- 4. Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165-173.
- 5. Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 2008;320:1444-1449.
- Clements FE. Plant succession: an analysis of the development of vegetation. Washington DC: Carnegie Institution; 1916.
- 7. Bazzaz FA. The physiological ecology of plant succession. Annu Rev Ecol Syst. 1979;10:351-371.
- 8. Chapin FS, Matson PA, Vitousek PM. Principles of terrestrial ecosystem ecology. 2nd ed. New York: Springer; 2011.
- 9. Bormann FH, Likens GE. Pattern and process in a forested ecosystem. New York: Springer-Verlag; 1994.
- 10. Jackson RB, Canadell J, Ehleringer JR, *et al.* A global analysis of root distributions for terrestrial biomes. Oecologia. 1996;108:389-411.
- 11. Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:348.
- 12. Six J, Bossuyt H, Degryze S, *et al.* A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004;79:7-31.
- 13. Bronick CJ, Lal R. Soil structure and management: a review. Geoderma. 2005;124:3-22.
- 14. Tisdall JM, Oades JM. Organic matter and water-stable aggregates in soils. J Soil Sci. 1982;33:141-163.
- 15. Rillig MC, Mummey DL. Mycorrhizas and soil structure. New Phytol. 2006;171:41-53.
- 16. Reichstein M, Bahn M, Ciais P, *et al.* Climate extremes and the carbon cycle. Nature. 2013;500:287-295.
- 17. Turner MG. Disturbance and landscape dynamics in a changing world. Ecology. 2010;91:2833-2849.
- 18. Costanza R, d'Arge R, de Groot R, *et al*. The value of the world's ecosystem services and natural capital. Nature. 1997;387:253-260.
- 19. Millennium Ecosystem Assessment. Ecosystems and human well-being: synthesis. Washington DC: Island Press; 2005.
- 20. Pagiola S, Arcenas A, Platais G. Can payments for environmental services help reduce poverty? An exploration of the issues and the evidence to date from Latin America. World Dev. 2005;33:237-253.
- NOAA National Centers for Environmental Information. Climate data online. Asheville, NC: NOAA; 2023.
- 22. Soil Survey Staff. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd ed. Washington DC: USDA-NRCS; 1999.

23. Fritts HC. Tree rings and climate. London: Academic Press; 1976.

- 24. Avery TE, Burkhart HE. Forest measurements. 5th ed. New York: McGraw-Hill; 2002.
- 25. Blake GR, Hartge KH. Bulk density. In: Klute A, editor. Methods of soil analysis, part 1. 2nd ed. Madison: ASA and SSSA; 1986. p. 363-375.
- 26. Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. In: Page AL, editor. Methods of soil analysis, part 2. 2nd ed. Madison: ASA and SSSA; 1982. p. 539-579.
- 27. Thomas GW. Soil pH and soil acidity. In: Sparks DL, editor. Methods of soil analysis, part 3. Madison: SSSA; 1996. p. 475-490.
- 28. Gee GW, Bauder JW. Particle-size analysis. In: Klute A, editor. Methods of soil analysis, part 1. 2nd ed. Madison: ASA and SSSA; 1986. p. 383-411.
- 29. Topp GC, Davis JL, Annan AP. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res. 1980;16:574-582.
- 30. Klute A. Water retention: laboratory methods. In: Klute A, editor. Methods of soil analysis, part 1. 2nd ed. Madison: ASA and SSSA; 1986. p. 635-662.
- 31. Reynolds WD, Elrick DE. In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the α -parameter using the Guelph permeameter. Soil Sci. 1985;140:292-302.
- 32. van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. 1980;44:892-898.
- 33. Kemper WD, Rosenau RC. Aggregate stability and size distribution. In: Klute A, editor. Methods of soil analysis, part 1. 2nd ed. Madison: ASA and SSSA; 1986. p. 425-442.
- 34. Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703-707.
- 35. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911-917.
- 36. Marx MC, Wood M, Jarvis SC. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem. 2001;33:1633-1640.
- 37. Anderson JPE. Soil respiration. In: Page AL, editor. Methods of soil analysis, part 2. 2nd ed. Madison: ASA and SSSA; 1982. p. 831-871.
- 38. Campbell Scientific Inc. Meteorological measurement systems. Logan, UT: Campbell Scientific; 2023.
- Frazer GW, Canham CD, Lertzman KP. Gap Light Analyzer (GLA): imaging software to extract canopy structure and gap light transmission indices from truecolour fisheye photographs. Burnaby, BC: Simon Fraser University; 1999.
- 40. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2023.
- 41. Rosseel Y. lavaan: an R package for structural equation modeling. J Stat Softw. 2012;48:1-36.
- 42. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346-363.
- 43. Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth. Bioscience. 1997;47:235-242.
- 44. Franklin JF, Spies TA, Van Pelt R, et al. Disturbances

and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manage. 2002;155:399-423.

- 45. Ellison D, Morris CE, Locatelli B, *et al.* Trees, forests and water: cool insights for a hot world. Glob Environ Change. 2017;43:51-61.
- 46. Andréassian V. Waters and forests: from historical controversy to scientific debate. J Hydrol. 2004;291:1-27.
- Rodriguez-Iturbe I, Porporato A. Ecohydrology of water-controlled ecosystems: soil moisture and plant dynamics. Cambridge: Cambridge University Press; 2004
- 48. Holling CS. Resilience and stability of ecological systems. Annu Rev Ecol Syst. 1973;4:1-23.
- 49. Grace JB. Structural equation modeling and natural systems. Cambridge: Cambridge University Press; 2006.
- 50. DeAngelis DL, Mulholland PJ, Palumbo AV, *et al.* Biogeochemical cycling in freshwater ecosystems. New York: Springer-Verlag; 1989.
- 51. Rillig MC. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci. 2004;84:355-363.
- 52. Wardle DA, Bardgett RD, Klironomos JN, *et al.* Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629-1633.
- 53. Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl. 2000;10:423-436.
- 54. Rumpel C, Kögel-Knabner I. Deep soil organic matter: a key but poorly understood component of terrestrial C cycle. Plant Soil. 2011;338:143-158.
- 55. Allen CD, Macalady AK, Chenchouni H, *et al.* A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. 2010;259:660-684.
- Brando PM, Goetz SJ, Baccini A, et al. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc Natl Acad Sci USA. 2010;107:14685-14690.
- 57. Pearce DW, Moran D. The economic value of biodiversity. London: Earthscan; 1994.
- 58. de Groot RS, Wilson MA, Boumans RMJ. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ. 2002;41:393-408.
- 59. Luyssaert S, Schulze ED, Börner A, *et al.* Old-growth forests as global carbon sinks. Nature. 2008;455:213-215.
- 60. Puettmann KJ, Coates KD, Messier C. A critique of silviculture: managing for complexity. Washington DC: Island Press; 2009.
- 61. Tahvonen O. Optimal choice between even- and unevenaged forestry. Nat Resour Model. 2009;22:289-321.
- 62. Thom D, Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev. 2016;91:760-781.
- 63. Millar CI, Stephenson NL, Stephens SL. Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl. 2007;17:2145-2151.
- 64. Chazdon RL. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science. 2008;320:1458-1460.
- 65. Walker LR, del Moral R. Primary succession and ecosystem rehabilitation. Cambridge: Cambridge

University Press; 2003.

- 66. Johnson EA, Miyanishi K. Testing the assumptions of chronosequences in succession. Ecol Lett. 2008;11:419-431.
- 67. Pickett STA. Space-for-time substitution as an alternative to long-term studies. In: Likens GE, editor. Long-term studies in ecology: approaches and alternatives. New York: Springer; 1989. p. 110-135.
- 68. Aber JD, Ollinger SV, Driscoll CT. Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition. Ecol Model. 1997;101:61-78.