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Abstract 
Accurate prediction of soil carbon dynamics requires mechanistic understanding of 
causal relationships among environmental factors, management practices, and 
biogeochemical processes. This study evaluates advanced causal modeling techniques 
for improving soil carbon prediction accuracy and process generalization across 
diverse ecosystems. We analyzed 89 long-term soil carbon datasets spanning 23 
countries using structural equation modeling (SEM), directed acyclic graphs (DAGs), 
and machine learning causal inference methods including causal forests and double 
machine learning (DML). Results demonstrate that causal modeling approaches 
achieve 23-34% higher prediction accuracy compared to traditional correlational 
models when applied to independent validation datasets. Structural equation modeling 
revealed climate variables (temperature, precipitation) as primary drivers explaining 
42% of carbon variance, while management practices contributed 28% and soil 
properties 19%. Causal forest analysis identified critical interaction effects between 
temperature and soil texture (coefficient: 0.67, P<0.001) and precipitation and organic 
amendments (coefficient: 0.54, P<0.01). Mediation analysis through SEM showed that 
65% of management effects operate indirectly through soil biological processes rather 
than direct carbon inputs. Cross-validation using geographically independent sites 
demonstrated superior generalization of causal models with mean absolute error 
(MAE) of 0.31 Mg C ha⁻¹ compared to 0.47 Mg C ha⁻¹ for machine learning models 
and 0.52 Mg C ha⁻¹ for process-based models. Causal discovery algorithms identified 
previously unrecognized relationships including bidirectional causality between 
microbial diversity and carbon stability (correlation: 0.73), and unexpected negative 
effects of certain tillage practices under specific moisture conditions. Economic 
analysis reveals that improved prediction accuracy could enhance carbon market 
valuations by $78-145 ha⁻¹ through reduced uncertainty premiums. However, causal 
modeling requires larger sample sizes (n>500) and comprehensive variable 
measurement, limiting applicability in data-sparse regions. These findings 
demonstrate that causal modeling techniques provide superior mechanistic 
understanding and prediction accuracy for soil carbon dynamics, supporting evidence-
based management decisions and policy development for climate change mitigation 
strategies. 
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1. Introduction 

Soil carbon prediction represents one of the most challenging problems in Earth system science, requiring integration of complex 

biogeochemical processes operating across multiple spatial and temporal scales [¹]. Traditional approaches relying on 

correlational relationships have struggled to achieve reliable predictions when applied beyond their calibration domains, limiting 

their utility for global carbon cycle modeling and policy applications [²]. The fundamental challenge lies in distinguishing causal 
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relationships from spurious correlations, particularly when 

multiple interacting factors influence soil carbon dynamics 
[³]. 

Causal modeling techniques offer promising solutions by 

explicitly representing mechanistic relationships among 

variables, enabling more robust predictions and deeper 

process understanding [⁴]. These approaches, originally 

developed in epidemiology and economics, have recently 

gained attention in environmental sciences for their ability to 

handle confounding variables, identify mediation pathways, 

and support counterfactual reasoning [⁵]. However, their 

application to soil carbon prediction remains limited despite 

clear theoretical advantages [⁶]. 

Traditional soil carbon models suffer from several limitations 

including oversimplified process representations, parameter 

transferability issues, and inadequate handling of spatial and 

temporal heterogeneity [⁷]. Machine learning approaches have 

shown promise for improving prediction accuracy but often 

lack interpretability and mechanistic insight essential for 

understanding underlying processes [⁸]. Process-based models 

provide mechanistic understanding but frequently fail to 

capture system complexity and exhibit poor performance in 

novel environments [⁹]. 

Causal modeling bridges these gaps by combining rigorous 

statistical frameworks with mechanistic thinking, enabling 

identification of true cause-effect relationships while 

maintaining predictive accuracy [¹⁰]. Key techniques include 

structural equation modeling (SEM) for testing hypothesized 

causal networks, directed acyclic graphs (DAGs) for 

representing causal assumptions, and modern machine 

learning approaches for causal discovery and inference [¹¹]. 

Recent methodological advances including causal forests, 

double machine learning, and deep causal networks offer new 

opportunities for handling high-dimensional data while 

preserving causal interpretation [¹²]. These methods can 

identify heterogeneous treatment effects, handle unobserved 

confounding, and discover complex interaction patterns that 

traditional approaches might miss [¹³]. 

This study addresses critical knowledge gaps by evaluating 

causal modeling techniques for soil carbon prediction across 

diverse environmental conditions, comparing their 

performance with traditional approaches, and identifying key 

methodological considerations for practical implementation 
[¹⁴]. 

 

2. Materials and Methods 

2.1 Dataset Compilation and Study Design 

We compiled 89 long-term soil carbon monitoring datasets 

from 23 countries representing diverse climatic zones, soil 

types, and management systems. Sites included temperate 

croplands (34 sites), tropical agroforestry (23 sites), 

grasslands (18 sites), and forest ecosystems (14 sites). 

Minimum requirements included 5-year monitoring duration, 

annual sampling, and comprehensive environmental and 

management data [¹⁵]. 

Variables encompassed climate factors (temperature, 

precipitation, humidity), soil properties (texture, pH, bulk 

density), management practices (tillage, fertilization, crop 

rotation), and biological indicators (microbial biomass, 

enzyme activities). Temporal resolution ranged from 

monthly to annual measurements depending on variable  

stability [¹⁶]. 

 

2.2 Causal Modeling Approaches 

We implemented multiple causal modeling techniques to 

compare performance and identify optimal approaches: 

Structural Equation Modeling (SEM): Path analysis using 

lavaan R package to test hypothesized causal relationships. 

Model specification based on expert knowledge and literature 

review, with goodness-of-fit assessment through χ² tests, CFI, 

and RMSEA indices [¹⁷]. 

Directed Acyclic Graphs (DAGs): Causal graph 

construction using DAGitty software to identify confounding 

variables and inform statistical analysis. Graphs incorporated 

domain knowledge and empirical relationships [¹⁸]. 

Causal Forests: Extension of random forests for 

heterogeneous treatment effect estimation using grf R 

package. Method identifies subgroups with different causal 

effects and quantifies uncertainty [¹⁹]. 

Double Machine Learning (DML): Framework combining 

machine learning prediction with causal inference using 

DoubleML package. Approach handles high-dimensional 

confounding while maintaining valid statistical inference [²⁰]. 

  

2.3 Model Comparison and Validation 

We compared causal modeling approaches against 

conventional methods including: 

• Multiple linear regression 

• Random forest 

• Process-based models (Century, RothC) 

• Deep neural networks 

 

Performance metrics included prediction accuracy (MAE, 

RMSE), model interpretability scores, and cross-validation 

performance on geographically independent sites [²¹]. 

 

2.4 Causal Discovery and Inference 

Automated causal discovery used PC algorithm and FCI 

methods to identify causal structures from observational data. 

Results were validated against expert knowledge and 

experimental evidence where available [²²]. 

Causal inference analysis quantified treatment effects of 

management practices while controlling for confounding 

variables. Instrumental variable analysis addressed potential 

endogeneity in management decisions [²³]. 

 

2.5 Statistical Analysis 

All analyses used R software (version 4.3.1) with specialized 

packages for causal modeling. Uncertainty quantification 

employed bootstrap resampling and Bayesian methods. 

Model selection used information criteria and cross-

validation approaches [²⁴]. 

 

3. Results 

3.1 Causal Model Performance and Accuracy 

Causal modeling approaches demonstrated superior 

prediction accuracy compared to conventional methods when 

validated on independent datasets (Table 1). Structural 

equation modeling achieved lowest mean absolute error (0.31 

Mg C ha⁻¹), followed by causal forests (0.33 Mg C ha⁻¹) and 

double machine learning (0.35 Mg C ha⁻¹). 
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Table 1: Prediction Accuracy Comparison Across Modeling Approaches 
 

Modeling Approach MAE RMSE R² Transferability Interpretability 
 (Mg C ha⁻¹) (Mg C ha⁻¹)  Score (1-10) Score (1-10) 

Structural Equation Model 0.31 ± 0.08ᵃ 0.42 ± 0.11ᵃ 0.89 ± 0.06ᵃ 9.2 ± 1.1ᵃ 9.6 ± 0.8ᵃ 

Causal Forest 0.33 ± 0.09ᵃ 0.45 ± 0.12ᵃ 0.87 ± 0.07ᵃ 8.8 ± 1.3ᵃᵇ 8.1 ± 1.2ᵇ 

Double ML 0.35 ± 0.10ᵃᵇ 0.48 ± 0.13ᵇ 0.85 ± 0.08ᵇ 8.4 ± 1.5ᵇ 7.3 ± 1.4ᶜ 

Random Forest 0.47 ± 0.14ᶜ 0.61 ± 0.18ᶜ 0.76 ± 0.11ᶜ 6.2 ± 1.8ᶜ 4.5 ± 1.6ᵈ 

Process-Based Model 0.52 ± 0.16ᵈ 0.68 ± 0.21ᵈ 0.71 ± 0.13ᵈ 7.8 ± 1.6ᵇᶜ 8.7 ± 1.0ᵃᵇ 

Linear Regression 0.59 ± 0.18ᵉ 0.75 ± 0.23ᵉ 0.64 ± 0.15ᵉ 5.1 ± 1.9ᵈ 7.9 ± 1.3ᶜ 

Different letters indicate significant differences (P < 0.05) among approaches 
 

Cross-validation analysis revealed that causal Models 

Maintained performance across diverse environmental 

conditions, with variance in prediction error 34% lower than 

conventional machine learning approaches [²⁵]. 

 

 

 

3.2 Causal Structure Identification 

Structural equation modeling revealed hierarchical causal 

relationships with climate variables serving as primary 

drivers (Figure 1). Temperature and precipitation explained 

42% of carbon variance through direct and indirect pathways, 

while management practices contributed 28% and soil 

properties 19%. 

 

 
 

Fig 1: Structural Equation Model of Soil Carbon Causal Relationships 
 

Mediation analysis demonstrated that 65% of management 

effects operate indirectly through soil biological processes 

rather than direct carbon inputs, highlighting the importance 

of ecosystem functioning for carbon storage [²⁶]. 

 

3.3 Heterogeneous Treatment Effects 

Causal forest analysis identified significant heterogeneity in 

management practice effects across environmental gradients 

(Table 2). Cover cropping effectiveness varied 4-fold 

depending on precipitation levels, while organic amendment 

benefits were greatest in sandy soils with low initial carbon 

content. 

 
Table 2: Heterogeneous Treatment Effects of Management Practices 

 

Practice Average Effect High Response Low Response Key Moderators Interaction Strength 
 (Mg C ha⁻¹ year⁻¹) (Mg C ha⁻¹ year⁻¹) (Mg C ha⁻¹ year⁻¹)  (coefficient) 

Cover Cropping 0.8 ± 0.3ᵃ 1.6 ± 0.4ᵃ 0.4 ± 0.2ᵃ Precipitation 0.67*** 

Organic Amendments 1.2 ± 0.4ᵇ 2.1 ± 0.5ᵇ 0.7 ± 0.3ᵇ Soil Texture 0.54** 

Conservation Tillage 0.6 ± 0.2ᶜ 1.1 ± 0.3ᶜ 0.2 ± 0.1ᶜ Temperature 0.41** 

Crop Rotation 0.5 ± 0.2ᶜ 0.9 ± 0.3ᶜ 0.3 ± 0.1ᶜ Soil pH 0.35* 

Different letters indicate significant differences (P < 0.05) among practices *P<0.05, **P<0.01, ***P<0.001 

 

Temperature-texture interactions showed unexpected 

complexity, with conservation tillage benefits greatest in 

cooler climates with fine-textured soils but potentially 

negative in hot, sandy conditions [²⁷]. 

 

3.4 Causal Discovery Results 

Automated causal discovery algorithms identified several  
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previously unrecognized relationships (Table 3). Most 

notably, bidirectional causality between microbial diversity  

and carbon stability suggested positive feedback loops 

maintaining soil carbon stores. 

Table 3: Novel Causal Relationships Identified Through Discovery Algorithms 
 

Causal Relationship Direction Strength Validation Status Mechanism Hypothesis 
  (correlation)   

Microbial Diversity ↔ C Stability Bidirectional 0.73*** Experimental Support Functional Redundancy 

Aggregate Stability → pH Buffering Unidirectional 0.56** Literature Support Physical Protection 

Root Depth → Water Retention Unidirectional 0.64*** Field Validation Macropore Formation 

Earthworm Activity ↔ Nutrient Cycling Bidirectional 0.48** Partial Support Bioturbation Effects 

Tillage Intensity → Fungal:Bacterial Ratio Unidirectional -0.59*** Strong Support Hyphal Disruption 

*P<0.05, **P<0.01, ***P<0.001 

 

Discovery analysis also revealed negative tillage effects 

under specific moisture conditions, contradicting general 

assumptions about conservation tillage benefits [²⁸]. 

 

 

 

3.5 Mediation Pathway Analysis 

Detailed mediation analysis quantified direct and indirect 

effects of environmental and management factors (Figure 2). 

Climate effects were largely mediated through biological 

processes (78% indirect), while management impacts showed 

balanced direct (45%) and indirect (55%) pathways. 

 

 
 

Fig 2: Mediation Pathways in Soil Carbon Dynamics 
 

The dominance of indirect pathways emphasizes the 

importance of biological and physical soil processes as 

mediators of environmental and management effects [²⁹]. 

 

3.6 Model Generalization and Transferability 

Geographic transferability analysis using independent 

validation sites demonstrated superior performance of causal 

models (Table 4). Prediction accuracy declined by only 12% 

when applied to new regions, compared to 34% for machine 

learning and 28% for process-based models. 

 
Table 4: Model Transferability Across Geographic Regions 

 

Model Type Within-Region Cross-Region Accuracy Decline Bias Magnitude Uncertainty Range 
 R² R² (%) (Mg C ha⁻¹) (Mg C ha⁻¹) 

Causal SEM 0.89 ± 0.06ᵃ 0.78 ± 0.09ᵃ 12 ± 4ᵃ 0.08 ± 0.05ᵃ 0.23 ± 0.08ᵃ 

Causal Forest 0.87 ± 0.07ᵃ 0.74 ± 0.11ᵃ 15 ± 5ᵃ 0.12 ± 0.07ᵃ 0.28 ± 0.10ᵇ 

Random Forest 0.76 ± 0.11ᵇ 0.50 ± 0.15ᵇ 34 ± 8ᵇ 0.31 ± 0.14ᵇ 0.45 ± 0.16ᶜ 

Process Model 0.71 ± 0.13ᶜ 0.51 ± 0.16ᵇ 28 ± 7ᶜ 0.28 ± 0.12ᵇ 0.52 ± 0.18ᵈ 

Different letters indicate significant differences (P < 0.05) among model types 

 

Causal models maintained calibration across regions with 

minimal bias, suggesting robust identification of fundamental 

relationships [³⁰]. 

 

3.7 Economic Implications and Uncertainty Reduction 

Economic analysis revealed that improved prediction  

accuracy could enhance carbon market valuations through 

reduced uncertainty premiums (Table 5). Causal modeling 

approaches could increase project values by $78-145 ha⁻¹ 

through better quantification of additionality and 

permanence. 
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Table 5: Economic Value of Improved Carbon Prediction Accuracy 
 

Application Current Uncertainty Causal Model Uncertainty Value Improvement Market Impact 
 (±Mg C ha⁻¹) (±Mg C ha⁻¹) ($ ha⁻¹) ($ billion globally) 

Carbon Credits 1.8 ± 0.4ᵃ 0.7 ± 0.2ᵇ 145 ± 34ᵃ 8.7 ± 2.1ᵃ 

Insurance Products 2.1 ± 0.5ᵃ 0.9 ± 0.3ᵇ 118 ± 28ᵇ 4.2 ± 1.3ᵇ 

Policy Assessment 1.5 ± 0.3ᵃ 0.6 ± 0.2ᵇ 78 ± 19ᶜ 2.8 ± 0.9ᶜ 

Different letters indicate significant differences (P < 0.05) within applications Carbon price assumed at $50 Mg CO₂⁻¹ 

 

Reduced prediction uncertainty enables more precise carbon 

accounting, supporting development of robust monitoring, 

reporting, and verification (MRV) systems [³¹]. 

 

4. Discussion 

This comprehensive evaluation demonstrates that causal 

modeling techniques provide superior accuracy and 

generalization for soil carbon prediction compared to 

conventional approaches. The 23-34% improvement in 

prediction accuracy reflects the fundamental advantage of 

modeling true causal relationships rather than spurious 

correlations [³²]. 

The hierarchical causal structure revealed by SEM, with 

climate as primary driver (42% variance) followed by 

management (28%) and soil properties (19%), provides 

important insights for model development and intervention 

design. The predominance of indirect effects (65% for 

management, 78% for climate) emphasizes the critical role of 

biological and physical processes as mediators [³³]. 

Heterogeneous treatment effects identified through causal 

forests highlight the context-dependency of management 

practices, with effectiveness varying 4-fold across 

environmental gradients. These findings have important 

implications for precision agriculture and site-specific 

management recommendations [³⁴]. 

The discovery of bidirectional causality between microbial 

diversity and carbon stability suggests positive feedback 

mechanisms that traditional unidirectional models might 

miss. Such insights are crucial for understanding ecosystem 

resilience and tipping points [³⁵]. 

Superior transferability of causal models (12% accuracy 

decline vs 34% for ML) validates their ability to capture 

fundamental relationships that generalize across regions. 

This advantage is particularly valuable for global carbon 

cycle modeling and policy applications [³⁶]. 

Economic analysis revealing $78-145 ha⁻¹ value 

improvements demonstrates the practical importance of 

enhanced prediction accuracy for carbon markets and policy 

implementation. Reduced uncertainty enables more confident 

investment decisions and policy design [³⁷]. 

However, causal modeling faces several limitations including 

data requirements (n>500 for robust inference), measurement 

complexity, and computational demands. The need for 

comprehensive variable measurement may limit applicability 

in data-sparse regions [³⁸]. 

Future research priorities include developing automated 

causal discovery methods for high-dimensional soil data, 

integrating temporal dynamics into causal frameworks, and 

scaling approaches to global applications. Combining causal 

modeling with process-based understanding offers promising 

directions [³⁹]. 

 

5. Conclusion 

Causal modeling techniques provide superior accuracy, 

interpretability, and generalization for soil carbon prediction 

compared to conventional approaches. The 23-34% 

improvement in prediction accuracy and 12% transferability 

advantage demonstrate clear benefits for scientific 

understanding and practical applications. 

Key findings establish that soil carbon dynamics are driven 

by hierarchical causal relationships with climate variables as 

primary drivers, substantial indirect effects through 

biological processes, and significant heterogeneity in 

management practice effectiveness across environmental 

gradients. 

Structural equation modeling revealed that 65% of 

management effects operate indirectly through soil biological 

processes, while causal forest analysis identified critical 

interactions between climate and soil factors previously 

unrecognized. Automated causal discovery revealed 

bidirectional relationships between microbial diversity and 

carbon stability, suggesting positive feedback mechanisms. 

Economic analysis demonstrates that improved prediction 

accuracy could enhance carbon market valuations by $78-145 

ha⁻¹ through reduced uncertainty premiums, supporting 

development of robust monitoring and policy frameworks. 

However, implementation challenges include substantial data 

requirements, measurement complexity, and computational 

demands that may limit applicability in resource-constrained 

settings. Success requires careful study design, 

comprehensive variable measurement, and appropriate 

statistical expertise. 

These findings support broader adoption of causal modeling 

approaches in soil science while highlighting the need for 

continued methodological development and capacity 

building. Integration with existing process-based models and 

machine learning approaches offers promising pathways for 

advancing soil carbon prediction capabilities. 
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