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Abstract

Accurate prediction of soil carbon dynamics requires mechanistic understanding of
causal relationships among environmental factors, management practices, and
biogeochemical processes. This study evaluates advanced causal modeling techniques
for improving soil carbon prediction accuracy and process generalization across
diverse ecosystems. We analyzed 89 long-term soil carbon datasets spanning 23
countries using structural equation modeling (SEM), directed acyclic graphs (DAGS),
and machine learning causal inference methods including causal forests and double
machine learning (DML). Results demonstrate that causal modeling approaches
achieve 23-34% higher prediction accuracy compared to traditional correlational
models when applied to independent validation datasets. Structural equation modeling
revealed climate variables (temperature, precipitation) as primary drivers explaining
42% of carbon variance, while management practices contributed 28% and soil
properties 19%. Causal forest analysis identified critical interaction effects between
temperature and soil texture (coefficient: 0.67, P<0.001) and precipitation and organic
amendments (coefficient: 0.54, P<0.01). Mediation analysis through SEM showed that
65% of management effects operate indirectly through soil biological processes rather
than direct carbon inputs. Cross-validation using geographically independent sites
demonstrated superior generalization of causal models with mean absolute error
(MAE) of 0.31 Mg C ha™' compared to 0.47 Mg C ha™! for machine learning models
and 0.52 Mg C ha™! for process-based models. Causal discovery algorithms identified
previously unrecognized relationships including bidirectional causality between
microbial diversity and carbon stability (correlation: 0.73), and unexpected negative
effects of certain tillage practices under specific moisture conditions. Economic
analysis reveals that improved prediction accuracy could enhance carbon market
valuations by $78-145 ha! through reduced uncertainty premiums. However, causal
modeling requires larger sample sizes (n>500) and comprehensive variable
measurement, limiting applicability in data-sparse regions. These findings
demonstrate that causal modeling techniques provide superior mechanistic
understanding and prediction accuracy for soil carbon dynamics, supporting evidence-
based management decisions and policy development for climate change mitigation
strategies.
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1. Introduction

Soil carbon prediction represents one of the most challenging problems in Earth system science, requiring integration of complex
biogeochemical processes operating across multiple spatial and temporal scales [, Traditional approaches relying on
correlational relationships have struggled to achieve reliable predictions when applied beyond their calibration domains, limiting
their utility for global carbon cycle modeling and policy applications 2. The fundamental challenge lies in distinguishing causal
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relationships from spurious correlations, particularly when
multiple interacting factors influence soil carbon dynamics
[3]

Causal modeling techniques offer promising solutions by
explicitly representing mechanistic relationships among
variables, enabling more robust predictions and deeper
process understanding ™. These approaches, originally
developed in epidemiology and economics, have recently
gained attention in environmental sciences for their ability to
handle confounding variables, identify mediation pathways,
and support counterfactual reasoning 1. However, their
application to soil carbon prediction remains limited despite
clear theoretical advantages 1.

Traditional soil carbon models suffer from several limitations
including oversimplified process representations, parameter
transferability issues, and inadequate handling of spatial and
temporal heterogeneity 1. Machine learning approaches have
shown promise for improving prediction accuracy but often
lack interpretability and mechanistic insight essential for
understanding underlying processes [, Process-based models
provide mechanistic understanding but frequently fail to
capture system complexity and exhibit poor performance in
novel environments [,

Causal modeling bridges these gaps by combining rigorous
statistical frameworks with mechanistic thinking, enabling
identification of true cause-effect relationships while
maintaining predictive accuracy 1!, Key techniques include
structural equation modeling (SEM) for testing hypothesized
causal networks, directed acyclic graphs (DAGs) for
representing causal assumptions, and modern machine
learning approaches for causal discovery and inference 221,
Recent methodological advances including causal forests,
double machine learning, and deep causal networks offer new
opportunities for handling high-dimensional data while
preserving causal interpretation [12. These methods can
identify heterogeneous treatment effects, handle unobserved
confounding, and discover complex interaction patterns that
traditional approaches might miss (23],

This study addresses critical knowledge gaps by evaluating
causal modeling techniques for soil carbon prediction across
diverse environmental conditions, comparing their
performance with traditional approaches, and identifying key

methodological considerations for practical implementation
[14]

2. Materials and Methods

2.1 Dataset Compilation and Study Design

We compiled 89 long-term soil carbon monitoring datasets
from 23 countries representing diverse climatic zones, soil
types, and management systems. Sites included temperate
croplands (34 sites), tropical agroforestry (23 sites),
grasslands (18 sites), and forest ecosystems (14 sites).
Minimum requirements included 5-year monitoring duration,
annual sampling, and comprehensive environmental and
management data [s],

Variables encompassed climate factors (temperature,
precipitation, humidity), soil properties (texture, pH, bulk
density), management practices (tillage, fertilization, crop
rotation), and biological indicators (microbial biomass,
enzyme activities). Temporal resolution ranged from
monthly to annual measurements depending on variable
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stability [el,

2.2 Causal Modeling Approaches

We implemented multiple causal modeling techniques to
compare performance and identify optimal approaches:
Structural Equation Modeling (SEM): Path analysis using
lavaan R package to test hypothesized causal relationships.
Model specification based on expert knowledge and literature
review, with goodness-of-fit assessment through y? tests, CF]I,
and RMSEA indices 7],

Directed Acyclic Graphs (DAGs): Causal graph
construction using DAGitty software to identify confounding
variables and inform statistical analysis. Graphs incorporated
domain knowledge and empirical relationships 81,

Causal Forests: Extension of random forests for
heterogeneous treatment effect estimation using grf R
package. Method identifies subgroups with different causal
effects and quantifies uncertainty 9],

Double Machine Learning (DML): Framework combining
machine learning prediction with causal inference using
DoubleML package. Approach handles high-dimensional
confounding while maintaining valid statistical inference [0,

2.3 Model Comparison and Validation

We compared causal modeling approaches against
conventional methods including:

e  Multiple linear regression

e Random forest

Process-based models (Century, RothC)

Deep neural networks

Performance metrics included prediction accuracy (MAE,
RMSE), model interpretability scores, and cross-validation
performance on geographically independent sites [211,

2.4 Causal Discovery and Inference

Automated causal discovery used PC algorithm and FCI
methods to identify causal structures from observational data.
Results were validated against expert knowledge and
experimental evidence where available [22,

Causal inference analysis quantified treatment effects of
management practices while controlling for confounding
variables. Instrumental variable analysis addressed potential
endogeneity in management decisions (23],

2.5 Statistical Analysis

All analyses used R software (version 4.3.1) with specialized
packages for causal modeling. Uncertainty quantification
employed bootstrap resampling and Bayesian methods.
Model selection used information criteria and cross-
validation approaches 4],

3. Results
3.1 Causal Model Performance and Accuracy
Causal modeling approaches demonstrated superior

prediction accuracy compared to conventional methods when
validated on independent datasets (Table 1). Structural
equation modeling achieved lowest mean absolute error (0.31
Mg C ha™'), followed by causal forests (0.33 Mg C ha™!) and
double machine learning (0.35 Mg C ha™).
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Table 1: Prediction Accuracy Comparison Across Modeling Approaches
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Modeling Approach MAE RMSE R2 Transferability | Interpretability
(MgCha') | MgCha™) Score (1-10) Score (1-10)

Structural Equation Model | 0.31+£0.08* | 0.42 +0.11» | 0.89 £ 0.06* 9.2+1.12 9.6 +0.8
Causal Forest 0.33+£0.09* | 0.45+0.12» | 0.87 £0.07» 8.8 +1.3® 81+1.2°
Double ML 0.35+0.10*» | 0.48 +0.13" | 0.85 +0.08" 8.4+ 1.5 7.3+ 1.4
Random Forest 0.47+0.14c | 0.61+0.18¢ | 0.76 +0.11¢ 6.2+1.8° 45+1.6¢
Process-Based Model 0.52+0.16¢ | 0.68 +0.21¢ | 0.71 +£0.13d 7.8 +1.6% 8.7+ 1.0%
Linear Regression 0.59+0.18¢ | 0.75+0.23¢ | 0.64 +0.15¢ 51+1.94 79+1.3

Different letters indicate significant differences (P < 0.05) among approaches

Cross-validation analysis revealed that causal
Maintained performance across diverse environmental
conditions, with variance in prediction error 34% lower than
conventional machine learning approaches 25,

Models

3.2 Causal Structure ldentification

Structural equation modeling revealed hierarchical causal
relationships with climate variables serving as primary
drivers (Figure 1). Temperature and precipitation explained
42% of carbon variance through direct and indirect pathways,
while management practices contributed 28% and soil
properties 19%.

Variance Explained in SOC (%)

@ Climate
@ Management
@ Soil Properties

Fig 1: Structural Equation Model of Soil Carbon Causal Relationships

Mediation analysis demonstrated that 65% of management
effects operate indirectly through soil biological processes
rather than direct carbon inputs, highlighting the importance
of ecosystem functioning for carbon storage [2¢l,

3.3 Heterogeneous Treatment Effects

Causal forest analysis identified significant heterogeneity in
management practice effects across environmental gradients
(Table 2). Cover cropping effectiveness varied 4-fold
depending on precipitation levels, while organic amendment
benefits were greatest in sandy soils with low initial carbon
content.

Table 2: Heterogeneous Treatment Effects of Management Practices

Practice Average Effect High Response Low Response Key Moderators | Interaction Strength
(MgCha'year!) | MgCha'year') | (MgCha!year") (coefficient)
Cover Cropping 0.8+0.3* 1.6 +£0.4° 0.4+0.22 Precipitation 0.67***
Organic Amendments 1.2+£0.4" 2.1+£0.5 0.7+0.3% Soil Texture 0.54**
Conservation Tillage 0.6 £0.2¢ 1.1+0.3 0.2+0.1¢ Temperature 0.41**
Crop Rotation 0.5+0.2¢ 0.9+£0.3 0.3+£0.1¢ Soil pH 0.35*

Different letters indicate significant differences (P < 0.05) among practices *P<0.05, **P<0.01, ***P<0.001

Temperature-texture  interactions

showed

unexpected

complexity, with conservation tillage benefits greatest in
cooler climates with fine-textured soils but potentially

negative in hot, sandy conditions 27,

3.4 Causal Discovery Results
Automated causal discovery algorithms identified several
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previously unrecognized relationships (Table 3). Most
notably, bidirectional causality between microbial diversity

and carbon stability suggested positive feedback loops

maintaining soil carbon stores.

www.soilfuturejournal.com

Table 3: Novel Causal Relationships Identified Through Discovery Algorithms

Causal Relationship Direction Strength Validation Status Mechanism Hypothesis
(correlation)
Microbial Diversity <> C Stability Bidirectional 0.73*** Experimental Support | Functional Redundancy
Aggregate Stability — pH Buffering Unidirectional 0.56** Literature Support Physical Protection
Root Depth — Water Retention Unidirectional 0.64*** Field Validation Macropore Formation
Earthworm Activity <> Nutrient Cycling Bidirectional 0.48** Partial Support Bioturbation Effects
Tillage Intensity — Fungal:Bacterial Ratio | Unidirectional -0.59*** Strong Support Hyphal Disruption

*P<0.05, **P<0.01, ***P<0.001

Discovery analysis also revealed negative tillage effects
under specific moisture conditions, contradicting general
assumptions about conservation tillage benefits 251,

3.5 Mediation Pathway Analysis

Detailed mediation analysis quantified direct and indirect
effects of environmental and management factors (Figure 2).
Climate effects were largely mediated through biological
processes (78% indirect), while management impacts showed
balanced direct (45%) and indirect (55%) pathways.

Effect Ske

Direct Effect

Mediation Analysis Results: Climate and Management Effects

Indirect via MA Indirect via PP Indirectvia DR Direct Effect Indirect via S5 Indirect via Ol Indirect via BA
Effect Type

Climate Effects @ Management Effects

Fig 2: Mediation Pathways in Soil Carbon Dynamics

The dominance of indirect pathways emphasizes the
importance of biological and physical soil processes as
mediators of environmental and management effects 1.

3.6 Model Generalization and Transferability

Geographic transferability analysis using independent
validation sites demonstrated superior performance of causal
models (Table 4). Prediction accuracy declined by only 12%
when applied to new regions, compared to 34% for machine
learning and 28% for process-based models.

Table 4: Model Transferability Across Geographic Regions

Model Type | Within-Region | Cross-Region | Accuracy Decline | Bias Magnitude | Uncertainty Range
R2 R2 (%) (Mg Cha™) (Mg C ha™)
Causal SEM 0.89 + 0.06* 0.78 + 0.092 12+ 4 0.08 + 0.05* 0.23 +0.08
Causal Forest 0.87 £ 0.07» 0.74 £ 0.11» 15+5 0.12 +0.07» 0.28 +0.10°
Random Forest 0.76 £0.11° 0.50 £ 0.15° 34£8° 0.31 £0.14" 0.45 +0.16¢
Process Model 0.71+£0.13¢ 0.51 £0.16° 28+ 7¢ 0.28 £0.12° 0.52 £0.18¢

Different letters indicate significant differences (P < 0.05) among model types

Causal models maintained calibration across regions with
minimal bias, suggesting robust identification of fundamental
relationships o1,

3.7 Economic Implications and Uncertainty Reduction
Economic analysis revealed that improved prediction

accuracy could enhance carbon market valuations through
reduced uncertainty premiums (Table 5). Causal modeling
approaches could increase project values by $78-145 ha™
through better quantification of additionality and
permanence.
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Table 5: Economic Value of Improved Carbon Prediction Accuracy

Application Current Uncertainty | Causal Model Uncertainty | Value Improvement | Market Impact
(Mg C ha™) (Mg C ha™) ($ ha™) ($ billion globally)
Carbon Credits 1.8+0.4° 0.7+0.2° 145 + 342 8.7+2.1
Insurance Products 2105 0.9+0.3" 118 + 28° 42+1.3°
Policy Assessment 1.5+0.3 0.6 £0.2° 78 + 19 2.8+£0.9

Different letters indicate significant differences (P < 0.05) within applications Carbon price assumed at $50 Mg CO:™!

Reduced prediction uncertainty enables more precise carbon
accounting, supporting development of robust monitoring,
reporting, and verification (MRV) systems (31,

4. Discussion

This comprehensive evaluation demonstrates that causal
modeling techniques provide superior accuracy and
generalization for soil carbon prediction compared to
conventional approaches. The 23-34% improvement in
prediction accuracy reflects the fundamental advantage of
modeling true causal relationships rather than spurious
correlations (2,

The hierarchical causal structure revealed by SEM, with
climate as primary driver (42% variance) followed by
management (28%) and soil properties (19%), provides
important insights for model development and intervention
design. The predominance of indirect effects (65% for
management, 78% for climate) emphasizes the critical role of
biological and physical processes as mediators [,
Heterogeneous treatment effects identified through causal
forests highlight the context-dependency of management
practices, with effectiveness varying 4-fold across
environmental gradients. These findings have important
implications for precision agriculture and site-specific
management recommendations 34,

The discovery of bidirectional causality between microbial
diversity and carbon stability suggests positive feedback
mechanisms that traditional unidirectional models might
miss. Such insights are crucial for understanding ecosystem
resilience and tipping points B3],

Superior transferability of causal models (12% accuracy
decline vs 34% for ML) validates their ability to capture
fundamental relationships that generalize across regions.
This advantage is particularly valuable for global carbon
cycle modeling and policy applications €],

Economic analysis revealing $78-145 ha' value
improvements demonstrates the practical importance of
enhanced prediction accuracy for carbon markets and policy
implementation. Reduced uncertainty enables more confident
investment decisions and policy design 57,

However, causal modeling faces several limitations including
data requirements (n>500 for robust inference), measurement
complexity, and computational demands. The need for
comprehensive variable measurement may limit applicability
in data-sparse regions [,

Future research priorities include developing automated
causal discovery methods for high-dimensional soil data,
integrating temporal dynamics into causal frameworks, and
scaling approaches to global applications. Combining causal
modeling with process-based understanding offers promising
directions B,

5. Conclusion

Causal modeling techniques provide superior accuracy,
interpretability, and generalization for soil carbon prediction
compared to conventional approaches. The 23-34%

improvement in prediction accuracy and 12% transferability
advantage demonstrate clear benefits for scientific
understanding and practical applications.

Key findings establish that soil carbon dynamics are driven
by hierarchical causal relationships with climate variables as
primary drivers, substantial indirect effects through
biological processes, and significant heterogeneity in
management practice effectiveness across environmental
gradients.

Structural equation modeling revealed that 65% of
management effects operate indirectly through soil biological
processes, while causal forest analysis identified critical
interactions between climate and soil factors previously
unrecognized. Automated causal discovery revealed
bidirectional relationships between microbial diversity and
carbon stability, suggesting positive feedback mechanisms.
Economic analysis demonstrates that improved prediction
accuracy could enhance carbon market valuations by $78-145
ha™' through reduced uncertainty premiums, supporting
development of robust monitoring and policy frameworks.
However, implementation challenges include substantial data
requirements, measurement complexity, and computational
demands that may limit applicability in resource-constrained
settings.  Success  requires careful study design,
comprehensive variable measurement, and appropriate
statistical expertise.

These findings support broader adoption of causal modeling
approaches in soil science while highlighting the need for
continued methodological development and capacity
building. Integration with existing process-based models and
machine learning approaches offers promising pathways for
advancing soil carbon prediction capabilities.
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