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Abstract 
Accurate estimation of total ecosystem carbon requires integrated assessment of 
above-ground biomass (AGB) and soil organic carbon (SOC), yet most remote sensing 
approaches focus on individual components. This study develops and validates multi-
sensor remote sensing frameworks for total carbon estimation across 347 validation 
sites spanning forests (134 sites), grasslands (98 sites), croplands (85 sites), and 
shrublands (30 sites) in 28 countries. We integrated optical (Sentinel-2, Landsat-8), 
radar (Sentinel-1, PALSAR-2), and LiDAR data using machine learning algorithms 
including random forest, support vector machines, and deep neural networks. Results 
demonstrate that integrated models achieve superior accuracy for total carbon 
estimation (R² = 0.87, RMSE = 23.4 Mg C ha⁻¹) compared to single-component 
approaches (R² = 0.64-0.72). Multi-sensor fusion improved AGB estimation accuracy 
by 34% (RMSE = 18.7 vs 28.3 Mg ha⁻¹) and SOC estimation by 28% (RMSE = 8.9 vs 
12.4 Mg C ha⁻¹) compared to single-sensor methods. Deep learning models showed 
strongest performance for complex forest ecosystems (R² = 0.91), while random forest 
algorithms excelled in agricultural landscapes (R² = 0.84). Optical-radar fusion proved 
most effective for AGB estimation, while thermal infrared and topographic variables 
were critical for SOC prediction. Validation across biomes revealed consistent 
performance with total carbon estimates ranging from 45.2 ± 12.8 Mg C ha⁻¹ in 
grasslands to 287.6 ± 68.4 Mg C ha⁻¹ in mature forests. Temporal analysis using 5-
year time series demonstrated carbon change detection capability with 89% accuracy 
for changes >10 Mg C ha⁻¹. Spatial scaling analysis indicates potential for global 
carbon mapping with uncertainty <15% for 90% of terrestrial areas. However, 
challenges remain for areas with persistent cloud cover, complex topography, and 
sparse ground truth data. Economic analysis reveals cost savings of 67% compared to 
field-based carbon assessment while providing complete spatial coverage. These 
findings demonstrate that integrated remote sensing approaches enable accurate, cost-
effective total carbon estimation essential for climate change monitoring, carbon 
market verification, and ecosystem management across multiple scales. 

 

Keywords: remote sensing, carbon estimation, above-ground biomass, soil organic carbon, multi-sensor fusion, machine 
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1. Introduction 

Accurate quantification of ecosystem carbon stocks is fundamental for climate change mitigation strategies, carbon market 

development, and sustainable land management [¹]. Total ecosystem carbon comprises above-ground biomass (AGB), below-

ground biomass, and soil organic carbon (SOC), with these components responding differently to environmental changes and 

management practices [²]. Traditional field-based methods provide high accuracy but are time-intensive, spatially limited, and 

expensive for large-scale applications [³]. 

Remote sensing technologies offer scalable solutions for carbon estimation, enabling consistent monitoring across large areas 



Journal of Soil Future Research www.soilfuturejournal.com  

 
    69 | P a g e  

 

with reduced costs [⁴]. However, most remote sensing 

approaches focus on individual carbon components, 

particularly AGB, while neglecting the substantial carbon 

stored in soils and below-ground biomass [⁵]. Soil organic 

carbon alone contains more carbon than atmosphere and 

vegetation combined, making its inclusion essential for 

comprehensive carbon accounting [⁶]. 

The challenge of integrated carbon estimation lies in the 

different physical properties and remote sensing signatures of 

above-ground and soil carbon components [⁷]. Above-ground 

biomass is directly observable through optical and radar 

sensors that detect vegetation structure, density, and 

chlorophyll content [⁸]. Conversely, soil carbon is not directly 

detectable from space, requiring indirect estimation through 

relationships with surface properties, vegetation 

characteristics, and environmental variables [⁹]. 

Recent advances in sensor technology, data fusion 

techniques, and machine learning algorithms have created 

new opportunities for integrated carbon estimation [¹⁰]. Multi-

sensor approaches combining optical, radar, and LiDAR data 

can capture complementary information about ecosystem 

structure and function [¹¹]. Machine learning methods enable 

complex non-linear relationships between remote sensing 

signals and carbon stocks across diverse ecosystems [¹²]. 

Optical sensors provide information on vegetation 

phenology, chlorophyll content, and leaf area index that 

relate to photosynthetic capacity and biomass production [¹³]. 

Synthetic aperture radar (SAR) penetrates vegetation 

canopies, providing structural information less affected by 

atmospheric conditions [¹⁴]. LiDAR systems directly measure 

three-dimensional vegetation structure, enabling precise 

biomass estimation for forest ecosystems [¹⁵]. 

The integration of multiple sensors and carbon components 

requires sophisticated modeling approaches that can handle 

high-dimensional data while maintaining interpretability [¹⁶]. 

Deep learning networks show promise for capturing complex 

relationships but require substantial training data and 

computational resources [¹⁷]. Ensemble methods combining 

multiple algorithms may provide optimal balance between 

accuracy and robustness [¹⁸]. 

This study addresses critical knowledge gaps by developing 

and validating integrated remote sensing frameworks for total 

ecosystem carbon estimation, evaluating multi-sensor fusion 

approaches, and assessing scalability for operational carbon 

monitoring applications [¹⁹]. 

 

2. Materials and Methods 

2.1 Study Sites and Ground Truth Data 

We compiled field measurements from 347 validation sites 

across diverse ecosystems and climatic zones. Sites included 

temperate and tropical forests (134 sites), grasslands and 

savannas (98 sites), agricultural croplands (85 sites), and 

shrubland ecosystems (30 sites) distributed across 28 

countries spanning six continents [²⁰]. 

Ground truth measurements encompassed AGB through 

allometric equations and destructive sampling, SOC through 

soil core analysis to 1-meter depth, and below-ground 

biomass using root:shoot ratios from literature. All 

measurements were standardized to Mg C ha⁻¹ using carbon 

content factors specific to vegetation and soil types [²¹]. 

 

2.2 Remote Sensing Data Acquisition 

We acquired multi-temporal data from multiple sensors: 

• Optical: Sentinel-2 (10-20m resolution), Landsat-8 

(30m), MODIS (250-500m) 

• Radar: Sentinel-1 C-band (10m), PALSAR-2 L-band 

(25m) 

• LiDAR: Airborne systems (1-5m) for selected forest 

sites 

• Thermal: Landsat-8 TIRS, MODIS LST for soil 

temperature 

• Topographic: SRTM DEM (30m) for terrain variables²² 

 

Data processing included atmospheric correction, geometric 

registration, cloud masking, and temporal compositing to 

create cloud-free annual composites. Spectral indices were 

calculated including NDVI, EVI, SAVI, and red-edge indices 

for vegetation analysis [²³]. 

 

2.3 Feature Engineering and Variable Selection 

We derived comprehensive feature sets from each sensor: 

• Optical: Spectral bands, vegetation indices, 

phenological metrics 

• Radar: Backscatter coefficients, polarization ratios, 

temporal statistics 

• Thermal: Land surface temperature, thermal anomalies 

• Topographic: Elevation, slope, aspect, terrain 

roughness 

• Climatic: Temperature, precipitation from World Clim 

datasets [²⁴]. 

 

Feature selection employed correlation analysis, mutual 

information, and recursive feature elimination to identify 

optimal variable combinations while avoiding 

multicollinearity [²⁵]. 

 

2.4 Machine Learning Model Development 

We implemented multiple algorithms for carbon estimation: 

• Random Forest (RF): Ensemble method robust to 

overfitting 

• Support Vector Machines (SVM): Effective for high-

dimensional data 

• Gradient Boosting: Sequential learning with error 

correction 

• Deep Neural Networks (DNN): Complex non-linear 

relationships 

• Ensemble Models: Weighted combinations of 

individual algorithms [²⁶] 

 

Model training used 70% of data with 10-fold cross-

validation, while 30% was reserved for independent 

validation. Hyperparameter optimization employed grid  

search and Bayesian optimization [²⁷]. 

 

2.5 Integration Strategies 

We tested three approaches for total carbon estimation: 

1. Component-wise: Separate models for AGB and SOC, 

summed for total. 

2. Direct: Single model predicting total carbon directly. 

3. Hierarchical: AGB model output used as input for SOC 

prediction [²⁸]. 

 

Uncertainty propagation in component-wise approaches used 

Monte Carlo methods to combine individual model 

uncertainties [²⁹]. 
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2.6 Validation and Accuracy Assessment 

Model performance was evaluated using multiple metrics: 

• Accuracy: R², RMSE, MAE, bias 

• Reliability: Prediction intervals, uncertainty 

quantification 

• Transferability: Cross-biome and cross-regional 

validation 

• Temporal stability: Multi-year consistency analysis [³⁰]. 

3. Results 

3.1 Single component model performance 

Individual component models achieved varying accuracy 

levels across ecosystems (Table 1). AGB estimation showed 

highest accuracy in forests (R² = 0.89) due to strong structural 

relationships with remote sensing signals, while grassland 

AGB proved more challenging (R² = 0.67) due to low 

biomass and saturation effects. 

 
Table 1: Single Component Model Performance by Ecosystem Type 

 

Ecosystem AGB Estimation SOC Estimation Dominant Sensors Key Variables 
 R² / RMSE (Mg C ha⁻¹) R² / RMSE (Mg C ha⁻¹)   

Temperate Forest 0.89 / 15.2ᵃ 0.74 / 12.8ᵃ LiDAR, Sentinel-1 Height, Backscatter 

Tropical Forest 0.84 / 21.7ᵇ 0.69 / 15.4ᵇ PALSAR-2, Sentinel-2 L-band, Red-edge 

Grassland 0.67 / 8.9ᶜ 0.82 / 9.7ᶜ Sentinel-2, Thermal NDVI, LST 

Cropland 0.71 / 6.4ᶜ 0.79 / 11.2ᶜ Optical, Climate EVI, Precipitation 

Shrubland 0.75 / 12.3ᵇ 0.76 / 13.6ᵇ Multi-sensor Structure, Temperature 

Different letters indicate significant differences (P < 0.05) within components 
 

SOC estimation accuracy was highest in grasslands (R² = 

0.82) where vegetation-soil relationships are strong, and 

lowest in tropical forests (R² = 0.69) due to complex canopy-

soil interactions [³¹]. 

 

3.2 Multi-Sensor Fusion Results 

Multi-sensor fusion significantly improved estimation 

accuracy for both components (Figure 1). The greatest 

improvements occurred when combining optical and radar 

data for AGB (34% RMSE reduction) and integrating thermal 

with optical data for SOC (28% improvement). 

 

 
 

Fig 1: Multi-Sensor Fusion Performance Improvements 
 

LiDAR addition provided substantial benefits for forest AGB 

estimation but limited improvement for other ecosystems due 

to data availability constraints [³²]. 

 

3.3 Total Carbon Integration Performance 

Integrated total carbon models achieved superior accuracy  

compared to component-wise approaches (Table 2). Direct 

modeling performed best overall (R² = 0.87), while 

hierarchical approaches showed promise for understanding 

component interactions. 

 

 

 

 
Table 2: Total Carbon Integration Model Performance 

 

Integration Approach Overall Accuracy Forest Grassland Cropland Computational Cost 
 R² / RMSE (Mg C ha⁻¹) R² R² R² (relative) 

Component-wise 0.78 / 31.2ᵃ 0.81ᵃ 0.74ᵃ 0.76ᵃ 1.0 

Direct Modeling 0.87 / 23.4ᵇ 0.91ᵇ 0.82ᵇ 0.84ᵇ 0.8 

Hierarchical 0.83 / 26.8ᶜ 0.87ᶜ 0.79ᵃᵇ 0.81ᶜ 1.3 

Different letters indicate significant differences (P < 0.05) among approaches 
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Direct modeling reduced computational requirements while 

improving accuracy through joint optimization of component 

relationships [³³]. 

 

 

 

3.4 Algorithm Comparison 

Machine learning algorithm performance varied by 

ecosystem complexity (Table 3). Deep neural networks 

excelled in forests with complex vegetation structure, while 

random forest showed robust performance across all 

ecosystems. 

 
Table 3: Machine Learning Algorithm Performance Comparison 

 

Algorithm Forest Grassland Cropland Interpretability Training Time 
 R² R² R² Score (1-10) (hours) 

Random Forest 0.84 ± 0.06ᵃ 0.81 ± 0.08ᵃ 0.83 ± 0.07ᵃ 8.2 ± 1.1ᵃ 2.3 ± 0.6ᵃ 

Support Vector Machine 0.79 ± 0.08ᵇ 0.77 ± 0.09ᵇ 0.79 ± 0.08ᵇ 6.1 ± 1.4ᵇ 4.7 ± 1.2ᵇ 

Gradient Boosting 0.86 ± 0.05ᵃ 0.80 ± 0.07ᵃ 0.85 ± 0.06ᵃ 7.4 ± 1.2ᶜ 3.8 ± 0.9ᶜ 

Deep Neural Network 0.91 ± 0.04ᶜ 0.78 ± 0.10ᵇ 0.81 ± 0.09ᵇ 4.2 ± 1.8ᵈ 12.6 ± 3.4ᵈ 

Ensemble 0.89 ± 0.05ᶜ 0.83 ± 0.07ᵃ 0.86 ± 0.06ᵃ 6.8 ± 1.3ᶜ 8.9 ± 2.1ᵉ 

Different letters indicate significant differences (P < 0.05) within columns 
 

Ensemble approaches provided optimal balance between 

accuracy and computational efficiency while maintaining 

reasonable interpretability [³⁴]. 

 

 

 

3.5 Spatial and Temporal Scaling Analysis 

Validation across spatial scales demonstrated consistent 

performance from plot-level (0.1 ha) to landscape-level (10 

km²) estimates (Figure 2). Temporal analysis revealed strong 

carbon change detection capability with 89% accuracy for 

changes exceeding 10 Mg C ha⁻¹. 

 

 
 

Fig 2: Spatial Scaling and Temporal Change Detection Performance 
 

3.6 Global Scaling Potential and Uncertainty Analysis 

Uncertainty analysis revealed spatially variable confidence 

levels across global terrestrial areas (Table 4). Prediction 

uncertainty was lowest in temperate regions with abundant 

training data and highest in tropical areas with complex 

vegetation structure. 

 
Table 4: Global Scaling Uncertainty Analysis by Region 

 

Region Data Availability Model Uncertainty Validation Sites Predicted Accuracy 
 (sites km⁻²) (±Mg C ha⁻¹) (n) (R²) 

Temperate North America 0.031ᵃ 18.4 ± 6.2ᵃ 89 0.91 ± 0.04ᵃ 

Temperate Europe 0.028ᵃ 19.7 ± 7.1ᵃ 76 0.89 ± 0.05ᵃ 

Tropical Americas 0.008ᵇ 32.6 ± 12.4ᵇ 43 0.82 ± 0.08ᵇ 

Tropical Africa 0.004ᶜ 38.9 ± 15.7ᶜ 23 0.78 ± 0.11ᶜ 

Tropical Asia 0.006ᵇᶜ 35.2 ± 13.8ᵇᶜ 31 0.80 ± 0.09ᵇᶜ 

Arid Regions 0.002ᵈ 28.1 ± 11.2ᵇ 18 0.75 ± 0.13ᶜ 

Different letters indicate significant differences (P < 0.05) among regions 

Global coverage analysis indicates reliable carbon mapping (uncertainty <15%) for 90% of terrestrial areas, with data 

gaps primarily in remote tropical and arid regions [³⁶]. 
 

3.7 Economic and Operational Considerations 

Cost-benefit analysis demonstrated substantial advantages of 

remote sensing approaches (Table 5). Integrated remote 

sensing reduced costs by 67% compared to field-based 

assessment while providing complete spatial coverage and 

temporal monitoring capability. 
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Table 5: Economic Analysis of Carbon Assessment Approaches 
 

Approach Cost per Unit Spatial Coverage Temporal Resolution Accuracy Total Cost Efficiency 
 ($ ha⁻¹) (% complete) (years) (R²) (accuracy/cost) 

Field Surveys 18.4 ± 4.2ᵃ 0.1 ± 0.03ᵃ 5.0 ± 2.0ᵃ 0.95 ± 0.03ᵃ 0.052 

Remote Sensing 6.1 ± 1.8ᵇ 100.0ᵇ 1.0 ± 0.0ᵇ 0.87 ± 0.05ᵇ 0.143 

Hybrid Approach 12.3 ± 3.1ᶜ 100.0ᵇ 1.0 ± 0.0ᵇ 0.91 ± 0.04ᶜ 0.074 

Different letters indicate significant differences (P < 0.05) among approaches 

 

Operational considerations include data processing 

requirements, expertise needs, and infrastructure investments 

for large-scale implementation [³⁷]. 

 

4. Discussion 

This comprehensive evaluation demonstrates that integrated 

remote sensing approaches enable accurate total ecosystem 

carbon estimation with substantial advantages over single-

component methods. The 23% improvement in total carbon 

estimation accuracy (R² = 0.87 vs 0.64-0.72) validates the 

importance of joint modeling approaches that capture 

component interactions [³⁸]. 

Multi-sensor fusion results confirm complementary 

information content across different sensor types, with 

optical-radar combinations providing optimal AGB 

estimation and thermal integration enhancing SOC 

prediction. The 34% RMSE reduction for AGB and 28% for 

SOC demonstrate clear benefits of comprehensive sensor 

utilization [³⁹]. 

Algorithm comparison reveals ecosystem-specific optimal 

approaches, with deep learning excelling in structurally 

complex forests while ensemble methods provide robust 

performance across diverse conditions. This finding suggests 

that operational systems should employ adaptive algorithms 

based on ecosystem characteristics [⁴⁰]. 

Spatial scaling analysis indicating consistent performance 

from plot to landscape scales validates the approach for 

operational carbon monitoring systems. The 89% accuracy 

for detecting changes >10 Mg C ha⁻¹ supports applications in 

carbon market monitoring and deforestation tracking [⁴¹]. 

The superior performance of direct modeling approaches (R² 

= 0.87) compared to component-wise methods (R² = 0.78) 

suggests that ecosystem carbon components interact in ways 

that joint optimization can capture. This finding has 

important implications for carbon cycle modeling and 

monitoring system design [⁴²]. 

Global scaling analysis revealing 90% terrestrial coverage 

with <15% uncertainty demonstrates the potential for 

operational global carbon monitoring, though data gaps in 

tropical and arid regions require attention through targeted 

field campaigns and sensor deployment [⁴³]. 

Economic analysis confirming 67% cost reduction while 

maintaining high accuracy provides compelling evidence for 

remote sensing adoption in carbon assessment programs. The 

complete spatial coverage and annual temporal resolution 

offer additional value not captured in simple cost 

comparisons [⁴⁴].  

However, several limitations require acknowledgment. 

Persistent cloud cover in tropical regions limits optical sensor 

utility, requiring increased reliance on radar systems with 

potentially reduced accuracy. Complex topography creates 

geometric and radiometric distortions that may affect model 

performance [⁴⁵]. 

The temporal stability analysis spanning five years provides 

confidence in approach robustness, but longer-term 

validation is needed to assess performance under changing 

climate conditions and ecosystem dynamics [⁴⁶]. 

Future research priorities include developing cloud-robust 

algorithms, expanding ground truth networks in 

underrepresented regions, and integrating new sensor 

technologies including hyperspectral and upcoming biomass 

missions [⁴⁷]. 

 

5. Conclusion 

Integrated remote sensing approaches for total ecosystem 

carbon estimation achieve superior accuracy and operational 

advantages compared to traditional single-component 

methods. The demonstrated performance improvements of 

23% for total carbon estimation through multi-sensor fusion 

and machine learning optimization provide strong evidence 

for adoption in operational carbon monitoring systems. 

Key findings establish that optical-radar fusion optimizes 

AGB estimation while thermal integration enhances SOC 

prediction, with ensemble machine learning algorithms 

providing optimal balance between accuracy and 

computational efficiency. Direct modeling approaches 

outperform component-wise methods, suggesting important 

interactions between above-ground and soil carbon 

components. 

Spatial scaling validation from plot to landscape levels and 

temporal change detection capabilities support applications 

ranging from carbon market verification to deforestation 

monitoring. The global scaling analysis indicating reliable 

coverage for 90% of terrestrial areas demonstrates potential 

for operational implementation. 

Economic analysis revealing 67% cost reduction compared to 

field-based assessment while providing complete spatial 

coverage and annual monitoring frequency offers compelling 

justification for system deployment. The integration 

approach enables comprehensive carbon accounting essential 

for climate change mitigation strategies. 

However, implementation challenges include data processing 

requirements, cloud cover limitations in tropical regions, and 

the need for expanded ground truth networks in 

underrepresented areas. Success requires continued 

algorithm development, sensor technology advances, and 

international coordination for ground truth data collection. 

These findings support immediate adoption of integrated 

remote sensing approaches for carbon monitoring while 

highlighting research priorities for enhanced global coverage 

and accuracy. The demonstrated capabilities enable 

evidence-based carbon management decisions essential for 

climate change mitigation and sustainable land use planning. 
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