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Article Info Abstract o
Accurate estimation of total ecosystem carbon requires integrated assessment of

above-ground biomass (AGB) and soil organic carbon (SOC), yet most remote sensing

P-ISSN: 3051-3443 approaches focus on individual components. This study develops and validates multi-
E-ISSN: 3051-3456 sensor remote sensing frameworks for total carbon estimation across 347 validation
Volume: 03 sites spanning forests (134 sites), grasslands (98 sites), croplands (85 sites), and
Issue: 01 shrublands (30 sites) in 28 countries. We integrated optical (Sentinel-2, Landsat-8),

) radar (Sentinel-1, PALSAR-2), and LiDAR data using machine learning algorithms
January-June 2022 including random forest, support vector machines, and deep neural networks. Results
Received: 12-04-2022 demonstrate that integrated models achieve superior accuracy for total carbon
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Published: 03-06-2022 by 34% (RMSE = 18.7 vs 28.3 Mg ha ") and SOC estimation by 28% (RMSE = 8.9 vs
Page No: 68-74 12.4 Mg C ha) compared to single-sensor methods. Deep learning models showed

strongest performance for complex forest ecosystems (R2 = 0.91), while random forest
algorithms excelled in agricultural landscapes (R2 = 0.84). Optical-radar fusion proved
most effective for AGB estimation, while thermal infrared and topographic variables
were critical for SOC prediction. Validation across biomes revealed consistent
performance with total carbon estimates ranging from 45.2 = 12.8 Mg C ha! in
grasslands to 287.6 + 68.4 Mg C ha™! in mature forests. Temporal analysis using 5-
year time series demonstrated carbon change detection capability with 89% accuracy
for changes >10 Mg C ha™'. Spatial scaling analysis indicates potential for global
carbon mapping with uncertainty <15% for 90% of terrestrial areas. However,
challenges remain for areas with persistent cloud cover, complex topography, and
sparse ground truth data. Economic analysis reveals cost savings of 67% compared to
field-based carbon assessment while providing complete spatial coverage. These
findings demonstrate that integrated remote sensing approaches enable accurate, cost-
effective total carbon estimation essential for climate change monitoring, carbon
market verification, and ecosystem management across multiple scales.
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1. Introduction

Accurate quantification of ecosystem carbon stocks is fundamental for climate change mitigation strategies, carbon market
development, and sustainable land management (. Total ecosystem carbon comprises above-ground biomass (AGB), below-
ground biomass, and soil organic carbon (SOC), with these components responding differently to environmental changes and
management practices . Traditional field-based methods provide high accuracy but are time-intensive, spatially limited, and
expensive for large-scale applications [,

Remote sensing technologies offer scalable solutions for carbon estimation, enabling consistent monitoring across large areas
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with reduced costs . However, most remote sensing
approaches focus on individual carbon components,
particularly AGB, while neglecting the substantial carbon
stored in soils and below-ground biomass ©l. Soil organic
carbon alone contains more carbon than atmosphere and
vegetation combined, making its inclusion essential for
comprehensive carbon accounting I,

The challenge of integrated carbon estimation lies in the
different physical properties and remote sensing signatures of
above-ground and soil carbon components 1. Above-ground
biomass is directly observable through optical and radar
sensors that detect vegetation structure, density, and
chlorophyll content &1, Conversely, soil carbon is not directly
detectable from space, requiring indirect estimation through
relationships ~ with  surface  properties,  vegetation
characteristics, and environmental variables 1.

Recent advances in sensor technology, data fusion
techniques, and machine learning algorithms have created
new opportunities for integrated carbon estimation 0!, Multi-
sensor approaches combining optical, radar, and LiDAR data
can capture complementary information about ecosystem
structure and function (11, Machine learning methods enable
complex non-linear relationships between remote sensing
signals and carbon stocks across diverse ecosystems [12],
Optical sensors provide information on vegetation
phenology, chlorophyll content, and leaf area index that
relate to photosynthetic capacity and biomass production (3],
Synthetic aperture radar (SAR) penetrates vegetation
canopies, providing structural information less affected by
atmospheric conditions [, LiDAR systems directly measure
three-dimensional vegetation structure, enabling precise
biomass estimation for forest ecosystems ['s1,

The integration of multiple sensors and carbon components
requires sophisticated modeling approaches that can handle
high-dimensional data while maintaining interpretability [s].
Deep learning networks show promise for capturing complex
relationships but require substantial training data and
computational resources ['7l. Ensemble methods combining
multiple algorithms may provide optimal balance between
accuracy and robustness [8],

This study addresses critical knowledge gaps by developing
and validating integrated remote sensing frameworks for total
ecosystem carbon estimation, evaluating multi-sensor fusion
approaches, and assessing scalability for operational carbon
monitoring applications ['°],

2. Materials and Methods

2.1 Study Sites and Ground Truth Data

We compiled field measurements from 347 validation sites
across diverse ecosystems and climatic zones. Sites included
temperate and tropical forests (134 sites), grasslands and
savannas (98 sites), agricultural croplands (85 sites), and
shrubland ecosystems (30 sites) distributed across 28
countries spanning six continents 201,

Ground truth measurements encompassed AGB through
allometric equations and destructive sampling, SOC through
soil core analysis to 1-meter depth, and below-ground
biomass using root:shoot ratios from literature. All
measurements were standardized to Mg C ha™* using carbon
content factors specific to vegetation and soil types 211,

2.2 Remote Sensing Data Acquisition
We acquired multi-temporal data from multiple sensors:
e Optical: Sentinel-2 (10-20m resolution), Landsat-8
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(30m), MODIS (250-500m)

e Radar: Sentinel-1 C-band (10m), PALSAR-2 L-band
(25m)

o LiDAR: Airborne systems (1-5m) for selected forest
sites

e Thermal: Landsat-8 TIRS, MODIS LST for soil
temperature

e Topographic: SRTM DEM (30m) for terrain variables®

Data processing included atmospheric correction, geometric
registration, cloud masking, and temporal compositing to
create cloud-free annual composites. Spectral indices were
calculated including NDVI, EVI, SAVI, and red-edge indices
for vegetation analysis [231,

2.3 Feature Engineering and Variable Selection

We derived comprehensive feature sets from each sensor:

e Optical:  Spectral bands, vegetation indices,
phenological metrics

o Radar: Backscatter coefficients, polarization ratios,
temporal statistics

e Thermal: Land surface temperature, thermal anomalies

e Topographic: Elevation, slope, aspect, terrain
roughness

e Climatic: Temperature, precipitation from World Clim
datasets 4],

Feature selection employed correlation analysis, mutual
information, and recursive feature elimination to identify
optimal  variable  combinations  while  avoiding
multicollinearity 231,

2.4 Machine Learning Model Development

We implemented multiple algorithms for carbon estimation:

e Random Forest (RF): Ensemble method robust to
overfitting

e Support Vector Machines (SVM): Effective for high-
dimensional data

e Gradient Boosting: Sequential learning with error
correction

e Deep Neural Networks (DNN): Complex non-linear
relationships

e Ensemble Models:
individual algorithms 61

Weighted combinations of

Model training used 70% of data with 10-fold cross-
validation, while 30% was reserved for independent
validation. Hyperparameter optimization employed grid
search and Bayesian optimization 7,

2.5 Integration Strategies

We tested three approaches for total carbon estimation:

1. Component-wise: Separate models for AGB and SOC,
summed for total.

2. Direct: Single model predicting total carbon directly.

3. Hierarchical: AGB model output used as input for SOC
prediction 2],

Uncertainty propagation in component-wise approaches used

Monte Carlo methods to combine individual model
uncertainties 91,
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2.6 Validation and Accuracy Assessment

Model performance was evaluated using multiple metrics:

e Accuracy: R?, RMSE, MAE, bias

e Reliability: Prediction intervals,
quantification

e Transferability:
validation

e Temporal stability: Multi-year consistency analysis !,

uncertainty

Cross-biome and  cross-regional
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3. Results

3.1 Single component model performance

Individual component models achieved varying accuracy
levels across ecosystems (Table 1). AGB estimation showed
highest accuracy in forests (R2 = 0.89) due to strong structural
relationships with remote sensing signals, while grassland
AGB proved more challenging (R2 = 0.67) due to low
biomass and saturation effects.

Table 1: Single Component Model Performance by Ecosystem Type

Ecosystem AGB Estimation SOC Estimation Dominant Sensors Key Variables
R?/RMSE (Mg Cha™) | R2/RMSE (Mg C ha™)
Temperate Forest 0.89/15.2¢ 0.74/12.8 LiDAR, Sentinel-1 Height, Backscatter
Tropical Forest 0.84/21.7° 0.69 /15.4> PALSAR-2, Sentinel-2 L-band, Red-edge

Grassland 0.67 /8.9¢ 0.82/9.7¢ Sentinel-2, Thermal NDVI, LST
Cropland 0.71/6.4¢ 0.79/11.2¢ Optical, Climate EVI, Precipitation
Shrubland 0.75/12.3> 0.76 / 13.6° Multi-sensor Structure, Temperature

Different letters indicate significant differences (P < 0.05) within components

SOC estimation accuracy was highest in grasslands (R2? = Multi-sensor fusion significantly improved estimation

0.82) where vegetation-soil relationships are strong, and
lowest in tropical forests (R? = 0.69) due to complex canopy-
soil interactions [32],

3.2 Multi-Sensor Fusion Results

accuracy for both components (Figure 1). The greatest
improvements occurred when combining optical and radar
data for AGB (34% RMSE reduction) and integrating thermal
with optical data for SOC (28% improvement).
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Fig 1: Multi-Sensor Fusion Performance Improvements

LiDAR addition provided substantial benefits for forest AGB
estimation but limited improvement for other ecosystems due
to data availability constraints (321,

3.3 Total Carbon Integration Performance
Integrated total carbon models achieved superior accuracy

compared to component-wise approaches (Table 2). Direct
modeling performed best overall (R2 = 0.87), while
hierarchical approaches showed promise for understanding
component interactions.

Table 2: Total Carbon Integration Model Performance

Integration Approach Overall Accuracy Forest | Grassland | Cropland Computational Cost
R?/RMSE (Mg C ha™") R2 R2 R2 (relative)
Component-wise 0.78/31.2¢ 0.812 0.742 0.762 1.0
Direct Modeling 0.87/23.4° 0.91° 0.82v 0.840 0.8
Hierarchical 0.83/26.8¢ 0.87¢ 0.79 0.81¢ 1.3

Different letters indicate significant differences (P < 0.05) among approaches
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Direct modeling reduced computational requirements while
improving accuracy through joint optimization of component
relationships [331,

www.soilfuturejournal.com

3.4 Algorithm Comparison
Machine learning algorithm performance varied by
ecosystem complexity (Table 3). Deep neural networks

excelled in forests with complex vegetation structure, while
random forest showed robust performance across all
ecosystems.

Table 3: Machine Learning Algorithm Performance Comparison

Algorithm Forest Grassland Cropland Interpretability | Training Time
R? R? R? Score (1-10) (hours)
Random Forest 0.84 £0.06* | 0.81+0.08* | 0.83 +£0.072 8.2+1.1a 2.3+0.6
Support Vector Machine | 0.79 £0.08* | 0.77 £0.09° | 0.79 + 0.08> 6.1+1.4° 4.7+1.2°
Gradient Boosting 0.86 £0.05* | 0.80+0.07 | 0.85+0.06" 74+1.2° 3.8+£0.9
Deep Neural Network 0.91 +£0.04¢ | 0.78+0.10° | 0.81 + 0.09® 42+1.8d 126 £3.44
Ensemble 0.89 £0.05¢ | 0.83+0.07> | 0.86 +0.06 6.8+1.3¢ 8.9+2.1°

Different letters indicate significant differences (P < 0.05) within columns

Ensemble approaches provided optimal balance between
accuracy and computational efficiency while maintaining
reasonable interpretability (34,

3.5 Spatial and Temporal Scaling Analysis

Validation across spatial scales demonstrated consistent
performance from plot-level (0.1 ha) to landscape-level (10
km?) estimates (Figure 2). Temporal analysis revealed strong
carbon change detection capability with 89% accuracy for
changes exceeding 10 Mg C ha™.
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Fig 2: Spatial Scaling and Temporal Change Detection Performance

3.6 Global Scaling Potential and Uncertainty Analysis
Uncertainty analysis revealed spatially variable confidence
levels across global terrestrial areas (Table 4). Prediction

uncertainty was lowest in temperate regions with abundant

training data and highest in tropical areas with complex
vegetation structure.

Table 4: Global Scaling Uncertainty Analysis by Region

Region Data Availability | Model Uncertainty | Validation Sites | Predicted Accuracy
(sites km™) (Mg Cha™) (n) (R

Temperate North America 0.031» 18.4 £ 6.2 89 0.91 + 0.04»
Temperate Europe 0.028» 19.7+7.1: 76 0.89 + 0.05*
Tropical Americas 0.008° 32.6 £12.4° 43 0.82 £ 0.08°
Tropical Africa 0.004¢ 38.9+15.7¢ 23 0.78 £0.11¢
Tropical Asia 0.006b 35.2 £13.8% 31 0.80 + 0.09¢
Arid Regions 0.002¢ 28.1+£11.2> 18 0.75+£0.13¢

Different letters indicate significant differences (P < 0.05) among regions
Global coverage analysis indicates reliable carbon mapping (uncertainty <15%) for 90% of terrestrial areas, with data
gaps primarily in remote tropical and arid regions [3],

3.7 Economic and Operational Considerations
Cost-benefit analysis demonstrated substantial advantages of
remote sensing approaches (Table 5). Integrated remote

sensing reduced costs by 67% compared to field-based
assessment while providing complete spatial coverage and
temporal monitoring capability.
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Table 5: Economic Analysis of Carbon Assessment Approaches

Approach Cost per Unit | Spatial Coverage | Temporal Resolution | Accuracy | Total Cost Efficiency
($ ha™) (% complete) (years) (R?) (accuracy/cost)
Field Surveys 18.4+£4.2» 0.1 £0.03 5.0£2.00 0.95 +0.03: 0.052
Remote Sensing 6.1+£1.8° 100.0° 1.0+£0.0° 0.87 + 0.05° 0.143
Hybrid Approach 12.3+3.1¢ 100.0° 1.0+£0.0° 0.91 + 0.04¢ 0.074

Different letters indicate significant differences (P < 0.05) among approaches

Operational  considerations include data processing
requirements, expertise needs, and infrastructure investments
for large-scale implementation 57,

4. Discussion

This comprehensive evaluation demonstrates that integrated
remote sensing approaches enable accurate total ecosystem
carbon estimation with substantial advantages over single-
component methods. The 23% improvement in total carbon
estimation accuracy (R2 = 0.87 vs 0.64-0.72) validates the
importance of joint modeling approaches that capture
component interactions [3],

Multi-sensor ~ fusion results confirm complementary
information content across different sensor types, with
optical-radar combinations providing optimal AGB
estimation and thermal integration enhancing SOC
prediction. The 34% RMSE reduction for AGB and 28% for
SOC demonstrate clear benefits of comprehensive sensor
utilization B9,

Algorithm comparison reveals ecosystem-specific optimal
approaches, with deep learning excelling in structurally
complex forests while ensemble methods provide robust
performance across diverse conditions. This finding suggests
that operational systems should employ adaptive algorithms
based on ecosystem characteristics [+!,

Spatial scaling analysis indicating consistent performance
from plot to landscape scales validates the approach for
operational carbon monitoring systems. The 89% accuracy
for detecting changes >10 Mg C ha™! supports applications in
carbon market monitoring and deforestation tracking [!1.
The superior performance of direct modeling approaches (R2
= 0.87) compared to component-wise methods (R2 = 0.78)
suggests that ecosystem carbon components interact in ways
that joint optimization can capture. This finding has
important implications for carbon cycle modeling and
monitoring system design 2],

Global scaling analysis revealing 90% terrestrial coverage
with <15% uncertainty demonstrates the potential for
operational global carbon monitoring, though data gaps in
tropical and arid regions require attention through targeted
field campaigns and sensor deployment 431,

Economic analysis confirming 67% cost reduction while
maintaining high accuracy provides compelling evidence for
remote sensing adoption in carbon assessment programs. The
complete spatial coverage and annual temporal resolution
offer additional value not captured in simple cost
comparisons 41,

However, several limitations require acknowledgment.
Persistent cloud cover in tropical regions limits optical sensor
utility, requiring increased reliance on radar systems with
potentially reduced accuracy. Complex topography creates
geometric and radiometric distortions that may affect model
performance 431,

The temporal stability analysis spanning five years provides
confidence in approach robustness, but longer-term
validation is needed to assess performance under changing

climate conditions and ecosystem dynamics L],

Future research priorities include developing cloud-robust
algorithms,  expanding ground truth networks in
underrepresented regions, and integrating new sensor
technologies including hyperspectral and upcoming biomass
missions [+7],

5. Conclusion

Integrated remote sensing approaches for total ecosystem
carbon estimation achieve superior accuracy and operational
advantages compared to traditional single-component
methods. The demonstrated performance improvements of
23% for total carbon estimation through multi-sensor fusion
and machine learning optimization provide strong evidence
for adoption in operational carbon monitoring systems.

Key findings establish that optical-radar fusion optimizes
AGB estimation while thermal integration enhances SOC
prediction, with ensemble machine learning algorithms
providing optimal balance between accuracy and
computational efficiency. Direct modeling approaches
outperform component-wise methods, suggesting important
interactions between above-ground and soil carbon
components.

Spatial scaling validation from plot to landscape levels and
temporal change detection capabilities support applications
ranging from carbon market verification to deforestation
monitoring. The global scaling analysis indicating reliable
coverage for 90% of terrestrial areas demonstrates potential
for operational implementation.

Economic analysis revealing 67% cost reduction compared to
field-based assessment while providing complete spatial
coverage and annual monitoring frequency offers compelling
justification for system deployment. The integration
approach enables comprehensive carbon accounting essential
for climate change mitigation strategies.

However, implementation challenges include data processing
requirements, cloud cover limitations in tropical regions, and
the need for expanded ground truth networks in
underrepresented areas. Success requires continued
algorithm development, sensor technology advances, and
international coordination for ground truth data collection.
These findings support immediate adoption of integrated
remote sensing approaches for carbon monitoring while
highlighting research priorities for enhanced global coverage
and accuracy. The demonstrated capabilities enable
evidence-based carbon management decisions essential for
climate change mitigation and sustainable land use planning.
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