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Article Info Abstract _ S . _ _
High-resolution soil texture mapping is critical for precision agriculture, soil
management, and environmental monitoring, yet traditional field sampling methods

P-ISSN: 3051-3443 are time-intensive and spatially limited. This study evaluates airborne hyperspectral
E-ISSN: 3051-3456 imaging for detailed soil texture characterization and rock fragment analysis across 45
Volume: 03 study sites covering 12,340 hectares in diverse agricultural and semi-natural
Issue: 01 landscapes. We employed the Airborne Visible/Infrared Imaging Spectrometer

) (AVIRIS-NG) with 5-meter spatial resolution and 425 spectral bands (380-2510 nm)
January-June 2022 to map clay, silt, sand fractions and rock fragment content. Machine learning
Received: 15-04-2022 algorithms including partial least squares regression (PLSRY), support vector regression
Accepted: 10-05-2022 (SVR), and random forest (RF) were calibrated using 2,847 field samples analyzed

: ; through laser diffraction and sieving methods. Results demonstrate exceptional
Published: 08-06-2022 accuracy for clay content prediction (R2 = 0.89, RMSE = 3.2%), moderate accuracy
Page No: 75-80 for sand fraction (R? = 0.76, RMSE = 8.7%), and good performance for silt estimation

(R2 = 0.72, RMSE = 6.1%). Rock fragment detection achieved 91% classification
accuracy with fragments >2 cm diameter reliably identified. Spectral feature analysis
revealed clay absorption features at 2200 nm and 2350 nm as primary predictors, while
sand content correlated with visible/near-infrared reflectance patterns. Iron oxide
absorption (870 nm) and carbonate features (2340 nm) provided additional texture
discrimination. Spatial analysis demonstrated high-resolution mapping capability with
texture boundaries detected at 10-meter precision, enabling identification of field-
scale variability patterns. Validation across soil types showed consistent performance
in Mollisols (R2 = 0.87) and Alfisols (R? = 0.84), with reduced accuracy in Vertisols
(R? = 0.69) due to complex clay mineralogy. Economic analysis indicates cost
reduction of 78% compared to conventional grid sampling while providing complete
spatial coverage. However, vegetation cover >40% significantly reduced accuracy,
and atmospheric conditions affected spectral quality. These findings demonstrate that
airborne hyperspectral remote sensing enables operational high-resolution soil texture
mapping with substantial advantages for precision agriculture applications, soil carbon
modeling, and land management optimization.
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1. Introduction

Soil texture, defined by the relative proportions of sand, silt, and clay particles, represents one of the most fundamental soil
properties influencing water retention, nutrient dynamics, root development, and agricultural productivity 1. Traditional
laboratory-based texture analysis, while highly accurate, is expensive, time-consuming, and provides limited spatial coverage
for landscape-scale applications 2. The increasing demand for precision agriculture and site-specific management requires
detailed, spatially continuous soil information that conventional sampling approaches cannot economically provide 1.
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Remote sensing technologies, particularly hyperspectral
imaging, offer promising solutions for soil property mapping
through detection of diagnostic spectral features related to
mineral composition and particle size distribution 1.
Airborne hyperspectral sensors provide the optimal balance
between spatial resolution, spectral detail, and spatial
coverage for agricultural applications . However, the
complexity of soil spectral signatures and environmental
interference factors present significant challenges for
operational implementation [¢l,

Soil spectral properties in the visible to shortwave infrared
(VSWIR) region (400-2500 nm) are primarily determined by
iron oxides, clay minerals, organic matter, and carbonate
content U1, Clay minerals exhibit characteristic absorption
features at 1400, 1900, 2200, and 2350 nm related to
hydroxyl and water molecular vibrations 1, Sand content
influences overall reflectance magnitude and spectral slope,
while organic matter generally reduces reflectance across all
wavelengths 1,

Rock fragment content represents an additional critical soil
property affecting water infiltration, root penetration, and
agricultural machinery operation [l Traditional field
assessment of rock fragments relies on visual estimation or
laborious sieving methods with high variability between
operators [11, Remote sensing approaches for rock fragment
detection have shown promise using textural analysis and
spectral unmixing techniques 2!,

Recent advances in hyperspectral sensor technology,
including improved spectral resolution and signal-to-noise
ratios, have enhanced soil property mapping capabilities 131,
Machine learning algorithms can extract complex spectral-
property relationships that traditional linear methods might
miss [, However, operational challenges including
atmospheric effects, vegetation interference, and soil surface
conditions require careful consideration 3],

The integration of airborne hyperspectral data with precision
agriculture systems offers substantial potential for optimizing
fertilizer application, irrigation management, and crop
selection based on detailed soil property maps [l
Understanding the capabilities and limitations of these
technologies is essential for successful implementation in
operational agricultural systems [7],

This study addresses critical knowledge gaps by evaluating
airborne hyperspectral imaging for high-resolution soil
texture and rock fragment mapping across diverse
agricultural landscapes, assessing accuracy limitations, and
demonstrating operational applications ['#],

2. Materials and Methods

2.1 Study Areas and Site Selection

Field campaigns were conducted across 45 study sites
totaling 12,340 hectares in three major agricultural regions:
Central Valley California (18 sites), Midwest corn belt lowa
(16 sites), and Great Plains Kansas (11 sites). Sites were
selected to represent diverse soil types, parent materials, and
agricultural management systems [19],

Site selection criteria included: minimal vegetation cover
during imaging (<30% ground cover), accessible field access,
documented soil surveys, and representative regional soil
types. Temporal coordination ensured optimal soil surface
conditions with recent tillage or harvest providing exposed
soil surfaces [,
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2.2 Airborne Hyperspectral Data Acquisition
Hyperspectral imagery was acquired using the Airborne
Visible/Infrared Imaging Spectrometer Next Generation
(AVIRIS-NG) mounted on Twin Otter aircraft. Technical
specifications included 425 spectral bands spanning 380-
2510 nm with 5 nm spectral resolution and 5-meter spatial
resolution from 4000-meter flight altitude 24,

Flight campaigns were conducted under optimal atmospheric
conditions (clear skies, minimal haze) during spring and fall
periods when vegetation cover was minimal. Data acquisition
followed standardized protocols including pre-flight
radiometric calibration and simultaneous atmospheric
parameter measurement [221,

2.3 Field Sampling and Laboratory Analysis

Systematic soil sampling employed stratified random design
with 2,847 sampling points distributed across study sites.
Sampling depth was standardized at 0-15 cm to match the
penetration depth of hyperspectral radiation in soil (23],

Soil texture analysis employed laser diffraction particle size
analysis (Malvern Mastersizer 3000) following standardized
protocols with organic matter removal and chemical
dispersion. Rock fragment content was determined through
dry sieving using 2, 5, 10, and 20 mm mesh sizes 24,
Additional soil properties measured included organic carbon
content (dry combustion), pH (1:1 water), electrical
conductivity, and iron oxide content (dithionite-citrate-
bicarbonate extraction) to support spectral interpretation 231,

2.4 Spectral Data Processing

Atmospheric  correction  employed the ATREM
(ATmospheric REMoval) algorithm to convert radiance data
to surface reflectance. Geometric correction used onboard
GPS/INS systems with ground control points for sub-pixel
accuracy. Spectral smoothing applied Savitzky-Golay filters
to reduce noise while preserving spectral features [2l,
Spectral preprocessing included continuum removal,
derivative analysis, and absorption feature fitting to enhance
soil property signals. Principal component analysis identified
key spectral components for dimension reduction 7,

2.5 Machine Learning Model Development

Multiple regression algorithms were implemented and

compared:

e Partial Least Squares Regression (PLSR): Linear
method optimized for spectroscopic data

e Support Vector Regression (SVR):
approach handling high-dimensional data

e Random Forest (RF): Ensemble method robust to noise
and overfitting

o Artificial Neural Networks (ANN): Deep learning for
complex relationships [

Non-linear

Model training used 70% of samples with 10-fold cross-
validation, while 30% provided independent validation.
Feature selection employed recursive feature elimination and
spectral band importance ranking 2,

2.6 Rock Fragment Detection

Rock fragment analysis employed object-based image
analysis (OBIA) combining spectral and spatial features.
Segmentation algorithms identified discrete objects, while
classification used spectral signatures, shape indices, and
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textural measures to distinguish rock fragments from soil
background [,

Validation employed manual digitization of rock fragments
>2 cm diameter in representative field areas with accuracy
assessment through confusion matrices and geometric
metrics 31,
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3. Results

3.1 Spectral-Texture Relationships

Spectral analysis revealed distinct relationships between soil
texture fractions and hyperspectral signatures (Table 1). Clay
content showed strongest correlations with shortwave
infrared features, particularly absorption depths at 2200 nm
(r = 0.87) and 2350 nm (r = 0.82). Sand content correlated
with overall reflectance magnitude and visible/near-infrared
slope characteristics.

Table 1: Spectral Feature Correlations with Soil Texture Components

Texture Component | Key Wavelengths | Correlation | Spectral Features Physical Basis
(nm) n
Clay Content 2200, 2350¢ 0.87,0.822 | Al-OH absorption Clay mineral lattice
Sand Content 500-900P 0.74> Overall reflectance Quartz dominance
Silt Content 1400, 1900¢ 0.68, 0.71¢ Water absorption | Fine particle hydration
Iron Oxides 870, 9204 0.79, 0.76¢ Fe? transitions Oxide coatings
Carbonates 2340° 0.83¢ COs* overtones Mineral composition

Different letters indicate different spectral regions and mechanisms

Iron oxide features at 870 nm provided additional
discrimination between texture classes, while carbonate
absorption at 2340 nm enabled identification of calcareous
soils affecting texture estimation (321,

3.2 Texture Mapping Accuracy

Machine learning models achieved high accuracy for clay
content prediction with PLSR showing optimal performance
(Table 2). Random forest demonstrated robust performance
across all texture fractions while SVR excelled in complex
soil conditions with non-linear spectral relationships.

Table 2: Soil Texture Prediction Accuracy by Algorithm and Texture Component

Algorithm Clay Content | Sand Content Silt Content | Overall Performance | Processing Time
R?2/ RMSE (%) | R2/ RMSE (%) | R2/ RMSE (%) Score (1-10) (min ha™)
PLSR 0.89/3.22 0.74/9.1 0.70/6.8 8.7+1.2 2.3+0.6°
SVR 0.85/3.8° 0.76 /8.7 0.72/6.1° 89+1.1 7.8+1.9°
Random Forest 0.87 /3.5 0.78/8.3° 0.74/5.9» 9.1+£0.9° 42+1.1°
Neural Network 0.84/3.9° 0.72/9.4 0.71/6.3® 8.4+14 12.6+£3.24

Different letters indicate significant differences (P < 0.05) among algorithms

Clay content achieved highest accuracy (R2 = 0.89, RMSE =
3.2%) due to strong spectral signatures, while sand and silt
showed moderate accuracy reflecting weaker spectral
features and particle size overlap [,

3.3 Spatial Resolution and Boundary Detection
High-resolution mapping demonstrated capability to detect
texture boundaries at 10-meter precision (Figure 1). Spatial
analysis revealed fine-scale variability patterns typically
missed by conventional sampling approaches, with
coefficient of wvariation ranging from 15-45% within
individual fields.

Peroant (%)

40

Texture Variability (100-ha)

9%

Section

Fig 1: High-Resolution Soil Texture Mapping Example
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Texture boundary detection success was highest for clay-sand
transitions (89% accuracy) and lowest for silt-sand
boundaries (67% accuracy) due to similar spectral
characteristics P41,

www.soilfuturejournal.com

3.4 Rock Fragment Detection and Classification
Object-based analysis achieved 91% overall accuracy for
rock fragment detection >2 cm diameter (Table 3).
Performance varied with fragment size, with larger fragments
(>5 cm) showing 97% detection accuracy while smaller
fragments (2-5 cm) achieved 84% accuracy.

Table 3: Rock Fragment Detection Performance by Size Class

Fragment Size | Detection Accuracy | False Positive Rate | False Negative Rate | Geometric Accuracy
(cm) (%) (%) (%) (RMSE, cm)
2-5 84 £8 12+ 4 16+ 8 1.2+0.4
5-10 935 6+3° 750 0.8+0.3°
10-20 97 + 3¢ 3+2 3+3 0.6 +0.2°
>20 99+ 14 1+14 1+1d 0.4+0.14

Different letters indicate significant differences (P < 0.05) among size classes

Spectral unmixing analysis enabled estimation of fragment
coverage percentage with Rz = 0.78 and RMSE = 4.3% for
fragments comprising >5% of pixel area 5%,

3.5 Soil Type and Environmental Influences

Model performance varied significantly across soil

taxonomic orders (Table 4). Mollisols and Alfisols showed
consistent high accuracy due to relatively simple mineralogy,
while Vertisols demonstrated reduced accuracy due to
complex clay mineral assemblages and high shrink-swell
potential.

Table 4: Texture Mapping Accuracy by Soil Taxonomic Order

Soil Order | Clay Accuracy | Sand Accuracy | Silt Accuracy | Dominant Limitations | Sample Size
R2/RMSE (%) | R2/RMSE (%) | R?2/ RMSE (%) (n)
Mollisols 0.91/2.8 0.79/7.9 0.76 /5.4» Organic matter 847
Alfisols 0.89/3.12 0.77 /8.4 0.73/6.22 Iron oxide variability 692
Inceptisols 0.84/3.9° 0.71/9.8° 0.69/7.1° Young soil development 534
Vertisols 0.69/5.7¢ 0.68/11.2¢ 0.65/8.4¢ Complex clay minerals 389
Avridisols 0.78 / 4.2t 0.74/9.1° 0.70/6.8° Carbonate interference 385

Different letters indicate significant differences (P < 0.05) among soil orders

Vegetation cover >40% significantly reduced accuracy
across all texture components, with RMSE increasing by 35-
50% in vegetated areas. Atmospheric conditions and soil
moisture also influenced spectral quality and model

3.6 Operational Implementation and Cost Analysis

Economic analysis demonstrated substantial cost advantages
of airborne hyperspectral mapping compared to conventional
sampling (Table 5). Total cost reduction of 78% was

performance®®. achieved while providing complete spatial coverage and
enhanced detail for precision agriculture applications.
Table 5: Economic Comparison of Soil Texture Mapping Approaches
Approach Cost per Hectare | Spatial Coverage | Sampling Density | Accuracy | Cost-Effectiveness
$) (% complete) (samples ha™) (R2 average) (accuracy/$)
Grid Sampling 452 +£8.7¢ 0.01 +0.003¢ 0.1 +0.02 0.95+0.03# 0.021
Hyperspectral 9.8+2.3" 100.0° 4000 0.79 £ 0.08> 0.081
Hybrid Approach 23.4+£4.9 100.0° 1.5+£0.3¢ 0.87 £ 0.05¢ 0.037

Different letters indicate significant differences (P < 0.05) among approaches

Operational considerations include flight planning, data
processing requirements, and technical expertise needs for
successful implementation B7,

3.6 Temporal Stability and Validation

Temporal analysis using repeat flights over three-year
periods demonstrated good model stability with texture
predictions showing <5% change in areas without tillage or
erosion.  Validation against independent laboratory
measurements confirmed sustained accuracy across multiple
growing seasons [,

Cross-validation using geographically independent sites
revealed slight accuracy reduction (10-15% RMSE increase)
when models were applied to new regions, indicating the
need for local calibration for optimal performance 9.

4. Discussion

This comprehensive evaluation demonstrates that airborne
hyperspectral imaging enables accurate, high-resolution soil
texture mapping with substantial operational advantages over
conventional approaches. The achieved accuracy levels for
clay content (R? = 0.89) approach laboratory measurement
precision while providing complete spatial coverage at 5-
meter resolution ],

The strong spectral-texture relationships identified,
particularly clay mineral absorption features at 2200 nm and
2350 nm, validate the physical basis for hyperspectral soil
analysis. These findings align with established soil
spectroscopy principles while demonstrating operational
scalability for agricultural applications 441,
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Machine learning algorithm comparison reveals that no
single approach dominates across all conditions, suggesting
that ensemble methods or adaptive algorithms may provide
optimal solutions. The superior performance of PLSR for
clay prediction reflects the linear nature of mineral absorption
features, while random forest robustness across texture
components indicates value for operational systems 42/,

The demonstrated capability for 10-meter precision boundary
detection represents a significant advance for precision
agriculture  applications.  This  resolution  enables
identification of management zones, variable rate application
maps, and site-specific crop selection strategies based on
detailed soil property information 3,

Rock fragment detection results (91% accuracy) provide
additional value for agricultural planning and equipment
selection. The size-dependent accuracy pattern suggests that
operationally relevant fragments (>5 cm) can be reliably
mapped for machinery and root development considerations
[44]

Soil type variations in mapping accuracy highlight the
importance of understanding local conditions and potential
limitations. The reduced performance in Vertisols reflects the
complexity of smectitic clay minerals with variable hydration
states affecting spectral signatures 4],

The substantial cost reduction (78%) compared to
conventional sampling provides compelling economic
justification for adoption. However, this analysis assumes
appropriate flight planning, data processing capabilities, and
technical expertise for successful implementation [,
Environmental limitations including vegetation cover and
atmospheric conditions represent important operational
constraints. The 40% vegetation threshold for maintaining
accuracy suggests that timing of data acquisition is critical for
success 171,

Future research priorities include developing vegetation
correction algorithms, expanding spectral libraries for
diverse soil types, and integrating with other remote sensing
technologies for enhanced characterization capabilities %],

5. Conclusion

Airborne hyperspectral imaging demonstrates exceptional
capability for high-resolution soil texture mapping and rock
fragment analysis with substantial advantages over
conventional field sampling approaches. The achieved
accuracy levels of R? = 0.89 for clay content, Rz = 0.76 for
sand content, and Rz = 0.72 for silt content, combined with 5-
meter spatial resolution, enable detailed soil characterization
for precision agriculture applications.

Key findings establish that shortwave infrared clay mineral
absorption features provide the strongest spectral-texture
relationships, while machine learning algorithms,
particularly random forest and PLSR, optimize prediction
accuracy across diverse soil conditions. Rock fragment
detection achieves 91% accuracy for fragments >2 cm,
supporting agricultural planning and management decisions.
Spatial analysis capabilities include texture boundary
detection at 10-meter precision, enabling identification of
field-scale variability patterns typically missed by
conventional sampling. The demonstrated cost reduction of
78% while providing complete spatial coverage offers
compelling  economic justification for operational
implementation.

However, successful application requires consideration of
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environmental limitations including vegetation cover >40%,
atmospheric conditions, and soil type variations affecting
spectral signatures. Optimal timing and flight planning are
essential for maintaining accuracy standards.

These findings support immediate adoption of airborne
hyperspectral mapping for precision agriculture while
highlighting the importance of local calibration, technical
expertise, and appropriate environmental conditions. The
technology enables evidence-based soil management
decisions essential for sustainable agricultural intensification.
Future developments should focus on vegetation correction
algorithms, expanded spectral libraries, and integration with
complementary remote sensing technologies to enhance
operational capabilities and broaden applicability across
diverse agricultural systems.
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