
Journal of Soil Future Research www.soilfuturejournal.com  

 
    75 | P a g e  

 

 
 
Airborne Spectroscopy for High-Resolution Soil Texture Mapping and Fragment 

Analysis: Hyperspectral Remote Sensing Applications and Validation 
  

Dr. Ahmed Mahfouz 1*, Dr. Thomas Bergmann 2, Dr. Diana Popescu 3, Dr. Samuel Okeke 4 

1-4 Department of Plant Protection, University of Khartoum, Sudan 

 

* Corresponding Author: Dr. Ahmed Mahfouz 

 

 

 

Article Info 

 

P-ISSN: 3051-3448 

E-ISSN: 3051-3456  

Volume: 03  

Issue: 01 

January-June 2022 

Received: 15-04-2022 

Accepted: 10-05-2022 

Published: 08-06-2022 

Page No: 75-80

Abstract 
High-resolution soil texture mapping is critical for precision agriculture, soil 
management, and environmental monitoring, yet traditional field sampling methods 
are time-intensive and spatially limited. This study evaluates airborne hyperspectral 
imaging for detailed soil texture characterization and rock fragment analysis across 45 
study sites covering 12,340 hectares in diverse agricultural and semi-natural 
landscapes. We employed the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS-NG) with 5-meter spatial resolution and 425 spectral bands (380-2510 nm) 
to map clay, silt, sand fractions and rock fragment content. Machine learning 
algorithms including partial least squares regression (PLSR), support vector regression 
(SVR), and random forest (RF) were calibrated using 2,847 field samples analyzed 
through laser diffraction and sieving methods. Results demonstrate exceptional 
accuracy for clay content prediction (R² = 0.89, RMSE = 3.2%), moderate accuracy 
for sand fraction (R² = 0.76, RMSE = 8.7%), and good performance for silt estimation 
(R² = 0.72, RMSE = 6.1%). Rock fragment detection achieved 91% classification 
accuracy with fragments >2 cm diameter reliably identified. Spectral feature analysis 
revealed clay absorption features at 2200 nm and 2350 nm as primary predictors, while 
sand content correlated with visible/near-infrared reflectance patterns. Iron oxide 
absorption (870 nm) and carbonate features (2340 nm) provided additional texture 
discrimination. Spatial analysis demonstrated high-resolution mapping capability with 
texture boundaries detected at 10-meter precision, enabling identification of field-
scale variability patterns. Validation across soil types showed consistent performance 
in Mollisols (R² = 0.87) and Alfisols (R² = 0.84), with reduced accuracy in Vertisols 
(R² = 0.69) due to complex clay mineralogy. Economic analysis indicates cost 
reduction of 78% compared to conventional grid sampling while providing complete 
spatial coverage. However, vegetation cover >40% significantly reduced accuracy, 
and atmospheric conditions affected spectral quality. These findings demonstrate that 
airborne hyperspectral remote sensing enables operational high-resolution soil texture 
mapping with substantial advantages for precision agriculture applications, soil carbon 
modeling, and land management optimization. 
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1. Introduction 

Soil texture, defined by the relative proportions of sand, silt, and clay particles, represents one of the most fundamental soil 

properties influencing water retention, nutrient dynamics, root development, and agricultural productivity [¹]. Traditional 

laboratory-based texture analysis, while highly accurate, is expensive, time-consuming, and provides limited spatial coverage 

for landscape-scale applications [²]. The increasing demand for precision agriculture and site-specific management requires 

detailed, spatially continuous soil information that conventional sampling approaches cannot economically provide [³]. 
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Remote sensing technologies, particularly hyperspectral 

imaging, offer promising solutions for soil property mapping 

through detection of diagnostic spectral features related to 

mineral composition and particle size distribution [⁴]. 

Airborne hyperspectral sensors provide the optimal balance 

between spatial resolution, spectral detail, and spatial 

coverage for agricultural applications [⁵]. However, the 

complexity of soil spectral signatures and environmental 

interference factors present significant challenges for 

operational implementation [⁶]. 

Soil spectral properties in the visible to shortwave infrared 

(VSWIR) region (400-2500 nm) are primarily determined by 

iron oxides, clay minerals, organic matter, and carbonate 

content [⁷]. Clay minerals exhibit characteristic absorption 

features at 1400, 1900, 2200, and 2350 nm related to 

hydroxyl and water molecular vibrations [⁸]. Sand content 

influences overall reflectance magnitude and spectral slope, 

while organic matter generally reduces reflectance across all 

wavelengths [⁹]. 

Rock fragment content represents an additional critical soil 

property affecting water infiltration, root penetration, and 

agricultural machinery operation [¹⁰]. Traditional field 

assessment of rock fragments relies on visual estimation or 

laborious sieving methods with high variability between 

operators [¹¹]. Remote sensing approaches for rock fragment 

detection have shown promise using textural analysis and 

spectral unmixing techniques [¹²]. 

Recent advances in hyperspectral sensor technology, 

including improved spectral resolution and signal-to-noise 

ratios, have enhanced soil property mapping capabilities [¹³]. 

Machine learning algorithms can extract complex spectral-

property relationships that traditional linear methods might 

miss [¹⁴]. However, operational challenges including 

atmospheric effects, vegetation interference, and soil surface 

conditions require careful consideration [¹⁵]. 

The integration of airborne hyperspectral data with precision 

agriculture systems offers substantial potential for optimizing 

fertilizer application, irrigation management, and crop 

selection based on detailed soil property maps [¹⁶]. 

Understanding the capabilities and limitations of these 

technologies is essential for successful implementation in 

operational agricultural systems [¹⁷]. 

This study addresses critical knowledge gaps by evaluating 

airborne hyperspectral imaging for high-resolution soil 

texture and rock fragment mapping across diverse 

agricultural landscapes, assessing accuracy limitations, and 

demonstrating operational applications [¹⁸]. 

 

2. Materials and Methods 

2.1 Study Areas and Site Selection 

Field campaigns were conducted across 45 study sites 

totaling 12,340 hectares in three major agricultural regions: 

Central Valley California (18 sites), Midwest corn belt Iowa 

(16 sites), and Great Plains Kansas (11 sites). Sites were 

selected to represent diverse soil types, parent materials, and 

agricultural management systems [¹⁹]. 

Site selection criteria included: minimal vegetation cover 

during imaging (<30% ground cover), accessible field access, 

documented soil surveys, and representative regional soil 

types. Temporal coordination ensured optimal soil surface 

conditions with recent tillage or harvest providing exposed 

soil surfaces [²⁰]. 

 

 

2.2 Airborne Hyperspectral Data Acquisition 

Hyperspectral imagery was acquired using the Airborne 

Visible/Infrared Imaging Spectrometer Next Generation 

(AVIRIS-NG) mounted on Twin Otter aircraft. Technical 

specifications included 425 spectral bands spanning 380-

2510 nm with 5 nm spectral resolution and 5-meter spatial 

resolution from 4000-meter flight altitude [²¹]. 

Flight campaigns were conducted under optimal atmospheric 

conditions (clear skies, minimal haze) during spring and fall 

periods when vegetation cover was minimal. Data acquisition 

followed standardized protocols including pre-flight 

radiometric calibration and simultaneous atmospheric 

parameter measurement [²²]. 

 

2.3 Field Sampling and Laboratory Analysis 

Systematic soil sampling employed stratified random design 

with 2,847 sampling points distributed across study sites. 

Sampling depth was standardized at 0-15 cm to match the 

penetration depth of hyperspectral radiation in soil [²³]. 

Soil texture analysis employed laser diffraction particle size 

analysis (Malvern Mastersizer 3000) following standardized 

protocols with organic matter removal and chemical 

dispersion. Rock fragment content was determined through 

dry sieving using 2, 5, 10, and 20 mm mesh sizes [²⁴]. 

Additional soil properties measured included organic carbon 

content (dry combustion), pH (1:1 water), electrical 

conductivity, and iron oxide content (dithionite-citrate-

bicarbonate extraction) to support spectral interpretation [²⁵]. 

 

2.4 Spectral Data Processing 

Atmospheric correction employed the ATREM 

(ATmospheric REMoval) algorithm to convert radiance data 

to surface reflectance. Geometric correction used onboard 

GPS/INS systems with ground control points for sub-pixel 

accuracy. Spectral smoothing applied Savitzky-Golay filters 

to reduce noise while preserving spectral features [²⁶]. 

Spectral preprocessing included continuum removal, 

derivative analysis, and absorption feature fitting to enhance 

soil property signals. Principal component analysis identified 

key spectral components for dimension reduction [²⁷]. 

 

2.5 Machine Learning Model Development 

Multiple regression algorithms were implemented and 

compared: 

• Partial Least Squares Regression (PLSR): Linear 

method optimized for spectroscopic data 

• Support Vector Regression (SVR): Non-linear 

approach handling high-dimensional data 

• Random Forest (RF): Ensemble method robust to noise 

and overfitting 

• Artificial Neural Networks (ANN): Deep learning for 

complex relationships [²⁸] 

 

Model training used 70% of samples with 10-fold cross-

validation, while 30% provided independent validation. 

Feature selection employed recursive feature elimination and 

spectral band importance ranking [²⁹]. 

 

2.6 Rock Fragment Detection 

Rock fragment analysis employed object-based image 

analysis (OBIA) combining spectral and spatial features. 

Segmentation algorithms identified discrete objects, while 

classification used spectral signatures, shape indices, and 
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textural measures to distinguish rock fragments from soil 

background [³⁰]. 

Validation employed manual digitization of rock fragments 

>2 cm diameter in representative field areas with accuracy 

assessment through confusion matrices and geometric 

metrics [³¹]. 

 

 

 

3. Results 

3.1 Spectral-Texture Relationships 

Spectral analysis revealed distinct relationships between soil 

texture fractions and hyperspectral signatures (Table 1). Clay 

content showed strongest correlations with shortwave 

infrared features, particularly absorption depths at 2200 nm 

(r = 0.87) and 2350 nm (r = 0.82). Sand content correlated 

with overall reflectance magnitude and visible/near-infrared 

slope characteristics. 

 
Table 1: Spectral Feature Correlations with Soil Texture Components 

 

Texture Component Key Wavelengths Correlation Spectral Features Physical Basis 
 (nm) (r)   

Clay Content 2200, 2350ᵃ 0.87, 0.82ᵃ Al-OH absorption Clay mineral lattice 

Sand Content 500-900ᵇ 0.74ᵇ Overall reflectance Quartz dominance 

Silt Content 1400, 1900ᶜ 0.68, 0.71ᶜ Water absorption Fine particle hydration 

Iron Oxides 870, 920ᵈ 0.79, 0.76ᵈ Fe³⁺ transitions Oxide coatings 

Carbonates 2340ᵉ 0.83ᵉ CO₃²⁻ overtones Mineral composition 

Different letters indicate different spectral regions and mechanisms 

 

Iron oxide features at 870 nm provided additional 

discrimination between texture classes, while carbonate 

absorption at 2340 nm enabled identification of calcareous 

soils affecting texture estimation [³²]. 

 

3.2 Texture Mapping Accuracy 

Machine learning models achieved high accuracy for clay 

content prediction with PLSR showing optimal performance 

(Table 2). Random forest demonstrated robust performance 

across all texture fractions while SVR excelled in complex 

soil conditions with non-linear spectral relationships. 

 
Table 2: Soil Texture Prediction Accuracy by Algorithm and Texture Component 

 

Algorithm Clay Content Sand Content Silt Content Overall Performance Processing Time 
 R² / RMSE (%) R² / RMSE (%) R² / RMSE (%) Score (1-10) (min ha⁻¹) 

PLSR 0.89 / 3.2ᵃ 0.74 / 9.1ᵃ 0.70 / 6.8ᵃ 8.7 ± 1.2ᵃ 2.3 ± 0.6ᵃ 

SVR 0.85 / 3.8ᵇ 0.76 / 8.7ᵃ 0.72 / 6.1ᵇ 8.9 ± 1.1ᵃ 7.8 ± 1.9ᵇ 

Random Forest 0.87 / 3.5ᵃᵇ 0.78 / 8.3ᵇ 0.74 / 5.9ᵇ 9.1 ± 0.9ᵇ 4.2 ± 1.1ᶜ 

Neural Network 0.84 / 3.9ᵇ 0.72 / 9.4ᵃ 0.71 / 6.3ᵃᵇ 8.4 ± 1.4ᵃ 12.6 ± 3.2ᵈ 

Different letters indicate significant differences (P < 0.05) among algorithms 

 

Clay content achieved highest accuracy (R² = 0.89, RMSE = 

3.2%) due to strong spectral signatures, while sand and silt 

showed moderate accuracy reflecting weaker spectral 

features and particle size overlap [³³]. 

 

 

 

3.3 Spatial Resolution and Boundary Detection 

High-resolution mapping demonstrated capability to detect 

texture boundaries at 10-meter precision (Figure 1). Spatial 

analysis revealed fine-scale variability patterns typically 

missed by conventional sampling approaches, with 

coefficient of variation ranging from 15-45% within 

individual fields. 

 

 
 

Fig 1: High-Resolution Soil Texture Mapping Example 
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Texture boundary detection success was highest for clay-sand 

transitions (89% accuracy) and lowest for silt-sand 

boundaries (67% accuracy) due to similar spectral 

characteristics [³⁴]. 

 

 

3.4 Rock Fragment Detection and Classification 

Object-based analysis achieved 91% overall accuracy for 

rock fragment detection >2 cm diameter (Table 3). 

Performance varied with fragment size, with larger fragments 

(>5 cm) showing 97% detection accuracy while smaller 

fragments (2-5 cm) achieved 84% accuracy. 

 
Table 3: Rock Fragment Detection Performance by Size Class 

 

Fragment Size Detection Accuracy False Positive Rate False Negative Rate Geometric Accuracy 

(cm) (%) (%) (%) (RMSE, cm) 

2-5 84 ± 8ᵃ 12 ± 4ᵃ 16 ± 8ᵃ 1.2 ± 0.4ᵃ 

5-10 93 ± 5ᵇ 6 ± 3ᵇ 7 ± 5ᵇ 0.8 ± 0.3ᵇ 

10-20 97 ± 3ᶜ 3 ± 2ᶜ 3 ± 3ᶜ 0.6 ± 0.2ᶜ 

>20 99 ± 1ᵈ 1 ± 1ᵈ 1 ± 1ᵈ 0.4 ± 0.1ᵈ 

Different letters indicate significant differences (P < 0.05) among size classes 
 

Spectral unmixing analysis enabled estimation of fragment 

coverage percentage with R² = 0.78 and RMSE = 4.3% for 

fragments comprising >5% of pixel area [³⁵]. 

 

3.5 Soil Type and Environmental Influences 

Model performance varied significantly across soil 

taxonomic orders (Table 4). Mollisols and Alfisols showed 

consistent high accuracy due to relatively simple mineralogy, 

while Vertisols demonstrated reduced accuracy due to 

complex clay mineral assemblages and high shrink-swell 

potential. 

 
Table 4: Texture Mapping Accuracy by Soil Taxonomic Order 

 

Soil Order Clay Accuracy Sand Accuracy Silt Accuracy Dominant Limitations Sample Size 
 R² / RMSE (%) R² / RMSE (%) R² / RMSE (%)  (n) 

Mollisols 0.91 / 2.8ᵃ 0.79 / 7.9ᵃ 0.76 / 5.4ᵃ Organic matter 847 

Alfisols 0.89 / 3.1ᵃ 0.77 / 8.4ᵃ 0.73 / 6.2ᵃ Iron oxide variability 692 

Inceptisols 0.84 / 3.9ᵇ 0.71 / 9.8ᵇ 0.69 / 7.1ᵇ Young soil development 534 

Vertisols 0.69 / 5.7ᶜ 0.68 / 11.2ᶜ 0.65 / 8.4ᶜ Complex clay minerals 389 

Aridisols 0.78 / 4.2ᵇᶜ 0.74 / 9.1ᵇ 0.70 / 6.8ᵇ Carbonate interference 385 

Different letters indicate significant differences (P < 0.05) among soil orders 

 

Vegetation cover >40% significantly reduced accuracy 

across all texture components, with RMSE increasing by 35-

50% in vegetated areas. Atmospheric conditions and soil 

moisture also influenced spectral quality and model 

performance³⁶. 

 

3.6 Operational Implementation and Cost Analysis 

Economic analysis demonstrated substantial cost advantages 

of airborne hyperspectral mapping compared to conventional 

sampling (Table 5). Total cost reduction of 78% was 

achieved while providing complete spatial coverage and 

enhanced detail for precision agriculture applications. 

 
Table 5: Economic Comparison of Soil Texture Mapping Approaches 

 

Approach Cost per Hectare Spatial Coverage Sampling Density Accuracy Cost-Effectiveness 
 ($) (% complete) (samples ha⁻¹) (R² average) (accuracy/$) 

Grid Sampling 45.2 ± 8.7ᵃ 0.01 ± 0.003ᵃ 0.1 ± 0.02ᵃ 0.95 ± 0.03ᵃ 0.021 

Hyperspectral 9.8 ± 2.3ᵇ 100.0ᵇ 4000ᵇ 0.79 ± 0.08ᵇ 0.081 

Hybrid Approach 23.4 ± 4.9ᶜ 100.0ᵇ 1.5 ± 0.3ᶜ 0.87 ± 0.05ᶜ 0.037 

Different letters indicate significant differences (P < 0.05) among approaches 

 

Operational considerations include flight planning, data 

processing requirements, and technical expertise needs for 

successful implementation [³⁷]. 

 

3.6 Temporal Stability and Validation 

Temporal analysis using repeat flights over three-year 

periods demonstrated good model stability with texture 

predictions showing <5% change in areas without tillage or 

erosion. Validation against independent laboratory 

measurements confirmed sustained accuracy across multiple 

growing seasons [³⁸]. 

Cross-validation using geographically independent sites 

revealed slight accuracy reduction (10-15% RMSE increase) 

when models were applied to new regions, indicating the 

need for local calibration for optimal performance [³⁹]. 

4. Discussion 

This comprehensive evaluation demonstrates that airborne 

hyperspectral imaging enables accurate, high-resolution soil 

texture mapping with substantial operational advantages over 

conventional approaches. The achieved accuracy levels for 

clay content (R² = 0.89) approach laboratory measurement 

precision while providing complete spatial coverage at 5-

meter resolution [⁴⁰]. 

The strong spectral-texture relationships identified, 

particularly clay mineral absorption features at 2200 nm and 

2350 nm, validate the physical basis for hyperspectral soil 

analysis. These findings align with established soil 

spectroscopy principles while demonstrating operational 

scalability for agricultural applications [⁴¹]. 
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Machine learning algorithm comparison reveals that no 

single approach dominates across all conditions, suggesting 

that ensemble methods or adaptive algorithms may provide 

optimal solutions. The superior performance of PLSR for 

clay prediction reflects the linear nature of mineral absorption 

features, while random forest robustness across texture 

components indicates value for operational systems [⁴²]. 

The demonstrated capability for 10-meter precision boundary 

detection represents a significant advance for precision 

agriculture applications. This resolution enables 

identification of management zones, variable rate application 

maps, and site-specific crop selection strategies based on 

detailed soil property information [⁴³]. 

Rock fragment detection results (91% accuracy) provide 

additional value for agricultural planning and equipment 

selection. The size-dependent accuracy pattern suggests that 

operationally relevant fragments (>5 cm) can be reliably 

mapped for machinery and root development considerations 
[⁴⁴]. 

Soil type variations in mapping accuracy highlight the 

importance of understanding local conditions and potential 

limitations. The reduced performance in Vertisols reflects the 

complexity of smectitic clay minerals with variable hydration 

states affecting spectral signatures [⁴⁵]. 

The substantial cost reduction (78%) compared to 

conventional sampling provides compelling economic 

justification for adoption. However, this analysis assumes 

appropriate flight planning, data processing capabilities, and 

technical expertise for successful implementation [⁴⁶]. 

Environmental limitations including vegetation cover and 

atmospheric conditions represent important operational 

constraints. The 40% vegetation threshold for maintaining 

accuracy suggests that timing of data acquisition is critical for 

success [⁴⁷]. 

Future research priorities include developing vegetation 

correction algorithms, expanding spectral libraries for 

diverse soil types, and integrating with other remote sensing 

technologies for enhanced characterization capabilities [⁴⁸]. 

 

5. Conclusion 

Airborne hyperspectral imaging demonstrates exceptional 

capability for high-resolution soil texture mapping and rock 

fragment analysis with substantial advantages over 

conventional field sampling approaches. The achieved 

accuracy levels of R² = 0.89 for clay content, R² = 0.76 for 

sand content, and R² = 0.72 for silt content, combined with 5-

meter spatial resolution, enable detailed soil characterization 

for precision agriculture applications. 

Key findings establish that shortwave infrared clay mineral 

absorption features provide the strongest spectral-texture 

relationships, while machine learning algorithms, 

particularly random forest and PLSR, optimize prediction 

accuracy across diverse soil conditions. Rock fragment 

detection achieves 91% accuracy for fragments >2 cm, 

supporting agricultural planning and management decisions. 

Spatial analysis capabilities include texture boundary 

detection at 10-meter precision, enabling identification of 

field-scale variability patterns typically missed by 

conventional sampling. The demonstrated cost reduction of 

78% while providing complete spatial coverage offers 

compelling economic justification for operational 

implementation. 

However, successful application requires consideration of 

environmental limitations including vegetation cover >40%, 

atmospheric conditions, and soil type variations affecting 

spectral signatures. Optimal timing and flight planning are 

essential for maintaining accuracy standards. 

These findings support immediate adoption of airborne 

hyperspectral mapping for precision agriculture while 

highlighting the importance of local calibration, technical 

expertise, and appropriate environmental conditions. The 

technology enables evidence-based soil management 

decisions essential for sustainable agricultural intensification. 

Future developments should focus on vegetation correction 

algorithms, expanded spectral libraries, and integration with 

complementary remote sensing technologies to enhance 

operational capabilities and broaden applicability across 

diverse agricultural systems. 
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