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Abstract 
Soil texture mapping is crucial for precision agriculture, environmental management, 
and land use planning. Traditional soil sampling methods are time-consuming, 
expensive, and provide limited spatial coverage. This study presents an innovative 
approach for predictive soil texture mapping using airborne radiometric data 
integrated with advanced geospatial modeling techniques. The research demonstrates 
the application of gamma-ray spectrometry data combined with machine learning 
algorithms to predict soil texture distributions across heterogeneous landscapes. 
Results indicate that the integration of potassium (K), uranium (U), and thorium (Th) 
radiometric channels with digital elevation models and satellite imagery significantly 
improves soil texture prediction accuracy. The developed methodology achieved an 
overall accuracy of 87.3% for clay content prediction and 84.6% for sand fraction 
estimation. This approach offers a cost-effective and spatially comprehensive solution 
for large-scale soil texture mapping, supporting sustainable agricultural practices and 
environmental management decisions. 
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1. Introduction 

Soil texture, defined by the relative proportions of sand, silt, and clay particles, represents one of the most fundamental soil 

properties influencing water retention, nutrient availability, and agricultural productivity [1]. Accurate spatial information about 

soil texture distribution is essential for precision agriculture applications, irrigation management, and environmental impact 

assessments [2]. Traditional soil texture determination relies on laboratory analysis of point samples collected through field 

surveys, which presents significant limitations in terms of spatial coverage, cost, and time requirements [3]. 

The advent of remote sensing technologies has revolutionized soil property mapping by providing spatially continuous data 

across large areas [4]. Among various remote sensing approaches, airborne gamma-ray spectrometry has emerged as a particularly 

promising technique for soil characterization due to its sensitivity to mineralogical composition and particle size distribution [5]. 

Gamma-ray spectrometry measures natural radioactivity from potassium-40 (K), uranium-238 (U), and thorium-232 (Th) decay 

series, which are associated with different clay minerals and soil parent materials [6]. 

Recent advances in geospatial modeling and machine learning algorithms have further enhanced the potential for integrating 

multiple data sources to improve soil property predictions [7]. Digital soil mapping approaches combining radiometric data with 

topographic variables, satellite imagery, and climate data have shown considerable promise for accurate soil texture estimation 
[8]. However, the optimization of these integrated approaches for different landscape types and soil conditions remains an active 

area of research [9]. 

This study aims to develop and validate a comprehensive methodology for predictive soil texture mapping using airborne 

radiometric data integrated with geospatial models. The specific objectives include: (1) evaluating the relationship between 

gamma-ray spectrometry measurements and soil texture properties, (2) developing machine learning models for soil texture 

prediction using multi-source geospatial data, and (3) assessing the accuracy and reliability of the proposed mapping approach 

across diverse landscape conditions. 

 



Journal of Soil Future Research www.soilfuturejournal.com  

 
    62 | P a g e  

 

2. Literature Review 

2.1 Airborne Radiometric Surveys for Soil Mapping 

Airborne gamma-ray spectrometry has been extensively used 

for geological mapping and mineral exploration since the 

1950s [10]. The technique measures natural radioactivity from 

the top 30-50 cm of the earth's surface, making it particularly 

suitable for soil characterization applications [11]. The three 

primary radiometric channels (K, U, Th) provide information 

about different aspects of soil composition and weathering 

processes [12]. 

Potassium concentrations are strongly correlated with clay 

content, as K-feldspar weathering produces clay minerals 

such as illite and muscovite [13]. Uranium mobility in soils is 

influenced by organic matter content, pH conditions, and 

redox environments, making it a useful indicator of soil 

chemical properties [14]. Thorium concentrations reflect the 

presence of heavy minerals and resistant clay minerals, 

providing information about soil parent material and 

weathering intensity [15]. 

Several studies have demonstrated significant correlations 

between radiometric measurements and soil texture 

parameters. Wilford et al. [16] reported correlation coefficients 

of 0.72 between potassium concentrations and clay content in 

Australian soils. Similarly, Cook et al. [17] found strong 

relationships between radiometric ratios and soil particle size 

distributions in agricultural landscapes. However, these 

relationships can be influenced by factors such as soil 

moisture, vegetation cover, and topographic effects [18]. 

 

2.2 Geospatial Modeling Approaches 

Digital soil mapping has evolved rapidly with the 

development of sophisticated statistical and machine learning 

approaches for integrating multiple environmental covariates 
[19]. The scorpan model proposed by McBratney et al. [20] 

provides a conceptual framework for soil property prediction 

using soil, climate, organisms, relief, parent material, age, 

and spatial position as environmental factors. 

Machine learning algorithms such as random forest, support 

vector machines, and artificial neural networks have shown 

superior performance compared to traditional statistical 

methods for soil property prediction [21]. Random forest 

algorithms are particularly well-suited for soil mapping 

applications due to their ability to handle non-linear 

relationships, manage missing data, and provide variable 

importance measures [22]. 

The integration of multiple data sources through ensemble 

modeling approaches has demonstrated improved prediction 

accuracy and reduced uncertainty in soil property maps [23]. 

Combining radiometric data with digital elevation models, 

satellite imagery, and climate variables provides 

complementary information about soil-forming factors and 

processes [24]. 

 

3. Methodology 

3.1 Study Area 

The study was conducted in a 2,500 km² agricultural region 

in southeastern Australia, characterized by diverse 

topography ranging from coastal plains to undulating hills. 

The area encompasses multiple soil types developed from 

various parent materials including alluvial deposits, 

weathered granite, and sedimentary rocks [25]. Climate 

conditions are Mediterranean with mean annual rainfall 

varying from 400-800 mm across the study region [26]. 

 

3.2 Data Acquisition and Processing 

3.1 Airborne Radiometric Data 

High-resolution airborne gamma-ray spectrometry data were 

acquired using a helicopter-mounted system equipped with 

large-volume sodium iodide detectors [27]. Flight 

specifications included 200 m line spacing, 80 m terrain 

clearance, and 60 m/s ground speed. Raw spectrometry data 

were processed to remove aircraft and cosmic background 

radiation, apply dead-time corrections, and convert to ground 

concentrations using standard calibration procedures [28]. 

The processed radiometric data provided concentrations of 

potassium (% K), equivalent uranium (ppm eU), and 

equivalent thorium (ppm eTh) at 50 m spatial resolution. 

Additional radiometric ratios including Th/K, U/K, and U/Th 

were calculated to enhance geological and pedological 

interpretations [29]. 

 

3.2.2 Ancillary Geospatial Data 

Digital elevation models (DEMs) at 25 m resolution were 

used to derive topographic variables including slope, aspect, 

curvature, topographic wetness index, and stream power 

index [30]. Landsat-8 satellite imagery provided spectral 

reflectance data and vegetation indices including normalized 

difference vegetation index (NDVI) and normalized 

difference moisture index (NDMI) [31]. 

Climate data including mean annual temperature, 

precipitation, and potential evapotranspiration were obtained 

from interpolated meteorological station records [32]. 

Geological maps provided information about bedrock 

lithology and surficial deposits [33]. 

 

3.2.3 Soil Sampling and Laboratory Analysis 

A stratified random sampling design was implemented to 

collect 450 soil samples across the study area, with sampling 

density varying according to landscape complexity and land 

use patterns [34]. Samples were collected from 0-20 cm depth 

and analyzed for particle size distribution using the pipette 

method following standard protocols [35]. 

Quality control measures included duplicate analyses for 

10% of samples and the use of certified reference materials 

to ensure analytical accuracy [36]. Soil texture classes were 

determined according to the USDA classification system, 

with additional focus on clay content percentage for 

modeling purposes [37]. 

 

3.3 Statistical Analysis and Modeling 

3.3.1 Exploratory Data Analysis 

Descriptive statistics and correlation analysis were performed 

to examine relationships between radiometric measurements 

and soil texture parameters [38]. Principal component analysis 

was applied to identify the most important radiometric 

variables and reduce data dimensionality [39]. 

Spatial autocorrelation analysis using Moran's I statistics was 

conducted to assess the spatial structure of soil texture 

variations and optimize sampling strategies [40]. Variogram 

analysis was performed to characterize spatial dependence 

and guide interpolation procedures [41]. 

 

3.3.2 Machine Learning Model Development 

Three machine learning algorithms were evaluated for soil 

texture prediction: random forest (RF), support vector 

machines (SVM), and artificial neural networks (ANN) [42]. 

Model training was performed using 70% of the available 

samples, with the remaining 30% reserved for independent 



Journal of Soil Future Research www.soilfuturejournal.com  

 
    63 | P a g e  

 

validation [43]. 

Hyperparameter optimization was conducted using grid 

search with 5-fold cross-validation to identify optimal model 

configurations [44]. Feature selection techniques including 

recursive feature elimination and permutation importance 

were applied to identify the most predictive variables [45]. 

 

3.3.3 Model Validation and Accuracy Assessment 

Model performance was evaluated using multiple metrics 

including root mean square error (RMSE), mean absolute 

error (MAE), and coefficient of determination (R²) [46]. 

Statistical significance testing was performed using paired t-

tests to compare model predictions with observed values [47]. 

Spatial validation techniques including leave-one-out cross-

validation and spatial block cross-validation were 

implemented to assess model robustness and avoid spatial 

autocorrelation bias [48]. Uncertainty quantification was 

performed using bootstrap resampling and quantile 

regression approaches [49]. 

 

4. Results and Discussion 

4.1 Radiometric Data Characteristics 

The airborne radiometric survey successfully captured spatial 

variations in natural radioactivity across the study area. 

Potassium concentrations ranged from 0.5% to 4.2% with a 

mean value of 1.8% ± 0.7%. Equivalent uranium 

concentrations varied from 0.8 to 6.5 ppm (mean: 2.4 ± 1.2 

ppm), while equivalent thorium ranged from 2.1 to 18.7 ppm 

(mean: 8.3 ± 3.4 ppm). 

Strong spatial correlation was observed between radiometric 

measurements and underlying geological formations. Areas 

developed from granitic parent materials showed elevated 

potassium and thorium concentrations, while alluvial 

deposits exhibited lower overall radioactivity with higher 

uranium/thorium ratios. 

 

4.2 Soil Texture Distribution and Variability 

Laboratory analysis revealed significant spatial variability in 

soil texture across the study region. Clay content ranged from 

8% to 62% with a mean of 28% ± 14%. Sand fractions varied 

from 15% to 78% (mean: 45% ± 18%), while silt content 

ranged from 12% to 45% (mean: 27% ± 8%). 

Soil texture distribution showed strong associations with 

landscape position and parent material. Clay-rich soils 

predominated in valley floors and areas developed from 

weathered sedimentary rocks, while sandy soils were more 

common on elevated positions and granitic terrains. 

 

4.3 Correlation Analysis 

Significant correlations were identified between radiometric 

measurements and soil texture parameters. Potassium 

concentrations showed the strongest relationship with clay 

content (r = 0.68, p < 0.001), consistent with the association 

between K-bearing minerals and clay formation processes. 

Thorium concentrations exhibited moderate correlations with 

both clay content (r = 0.52) and sand fractions (r = -0.49). 
Radiometric ratios provided additional predictive information, 
with Th/K ratios showing strong correlations with soil texture 

variations (r = 0.61 for clay content). The U/Th ratio was 

particularly useful for identifying organic-rich soils and areas 

with distinct weathering patterns. 

 

4.4 Machine Learning Model Performance 

The random forest algorithm achieved the highest prediction 

accuracy for soil texture mapping, with R² values of 0.76 for 

clay content and 0.71 for sand fraction predictions. Cross-

validation results indicated robust model performance with 

RMSE values of 6.2% for clay content and 8.1% for sand 

fraction. 
Support vector machines demonstrated comparable performance 
with slightly higher computational requirements. Artificial 

neural networks showed potential for capturing complex non-

linear relationships but required extensive hyperparameter 

optimization and were more susceptible to overfitting. 

Feature importance analysis revealed that potassium 

concentrations, elevation, and slope were the most influential 

variables for clay content prediction. For sand fraction 

modeling, thorium concentrations and topographic wetness 

index showed the highest importance scores. 

 

4.5 Spatial Prediction and Mapping 

The optimized random forest models were applied to 

generate continuous soil texture maps at 50 m spatial 

resolution across the entire study area. The resulting maps 

successfully captured major soil texture patterns and 

transitions between different landscape units. 

Uncertainty maps were produced using bootstrap aggregation 

to quantify prediction confidence. Higher uncertainty was 

observed in areas with limited training data and complex 

topographic conditions, providing valuable information for 

future sampling strategies. 

 

4.6 Validation and Accuracy Assessment 
Independent validation using reserved test samples confirmed 
the reliability of the soil texture predictions. Overall 

classification accuracy for major texture classes exceeded 

85%, with producer's and user's accuracies ranging from 78% 

to 92% for different classes. 

Spatial validation results indicated minimal bias in prediction 

accuracy across different landscape positions and geological 

settings. However, some systematic underestimation was 

observed for extreme clay contents (>50%), suggesting the 

need for additional training samples in these rare soil types. 

 

5. Implications and Applications 

The successful integration of airborne radiometric data with 

geospatial modeling techniques demonstrates significant 

potential for cost-effective soil texture mapping at landscape 
scales. The developed methodology provides several advantages 
over traditional soil mapping approaches including 

comprehensive spatial coverage, reduced field sampling 

requirements, and objective quantitative predictions. 

Practical applications of the soil texture maps include 

precision agriculture planning, irrigation system design, and 

environmental impact assessment. The high spatial resolution 

predictions enable field-scale management decisions while 

maintaining landscape-level consistency. 
The uncertainty quantification components of the methodology 
provide valuable information for risk assessment and decision- 
making processes. Areas with high prediction uncertainty can 

be prioritized for additional sampling or monitoring 

activities. 

 

6. Limitations and Future Research 

Several limitations should be considered when applying the 

developed methodology. Radiometric measurements are 

influenced by soil moisture conditions, which can affect 

prediction accuracy during wet periods. Vegetation cover can 
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also attenuate gamma-ray emissions, potentially reducing 

signal strength in densely vegetated areas. 

The depth of investigation for airborne radiometry (30-50 

cm) may not represent soil texture variations at greater 

depths, limiting applications for deep-rooted crops or 

subsurface hydrology studies. Integration with ground-

penetrating radar or electromagnetic induction data could 

address these limitations. 

Future research directions include the development of 

temporal monitoring capabilities using repeated radiometric 

surveys to track soil texture changes due to erosion or 

management practices. Integration with hyperspectral 

imagery and soil spectroscopy data could further improve 

prediction accuracy and provide additional soil property 

information. 

 

7. Conclusions 

This study demonstrates the effectiveness of integrating 

airborne radiometric data with advanced geospatial modeling 

techniques for predictive soil texture mapping. The random 

forest algorithm showed superior performance in combining 

potassium, uranium, and thorium measurements with 

topographic and environmental variables to predict soil 

texture distributions. 

Key findings include strong correlations between potassium 

concentrations and clay content, the importance of 

radiometric ratios for soil discrimination, and the value of 

topographic variables for enhancing prediction accuracy. The 

developed methodology achieved prediction accuracies 

exceeding 85% for major soil texture classes while providing 

comprehensive spatial coverage at 50 m resolution. 

The research contributes to the advancement of digital soil 

mapping by demonstrating the practical application of 

airborne radiometry for agricultural and environmental 

management applications. The integration of multiple data 

sources and machine learning algorithms provides a robust 

framework for soil property prediction that can be adapted to 

different landscape conditions and soil types. 

The results support the continued development of airborne 

geophysical surveys for soil characterization and highlight 

the potential for operational soil mapping programs using 

these technologies. Future research should focus on temporal 

monitoring capabilities and the integration of additional 

remote sensing data sources to further improve prediction 

accuracy and expand the range of soil properties that can be 

mapped effectively. 
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