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Soil texture mapping is crucial for precision agriculture, environmental management,
and land use planning. Traditional soil sampling methods are time-consuming,
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1. Introduction

Soil texture, defined by the relative proportions of sand, silt, and clay particles, represents one of the most fundamental soil
properties influencing water retention, nutrient availability, and agricultural productivity [*1. Accurate spatial information about
soil texture distribution is essential for precision agriculture applications, irrigation management, and environmental impact
assessments [, Traditional soil texture determination relies on laboratory analysis of point samples collected through field
surveys, which presents significant limitations in terms of spatial coverage, cost, and time requirements £,

The advent of remote sensing technologies has revolutionized soil property mapping by providing spatially continuous data
across large areas 1. Among various remote sensing approaches, airborne gamma-ray spectrometry has emerged as a particularly
promising technique for soil characterization due to its sensitivity to mineralogical composition and particle size distribution I,
Gamma-ray spectrometry measures natural radioactivity from potassium-40 (K), uranium-238 (U), and thorium-232 (Th) decay
series, which are associated with different clay minerals and soil parent materials 61,

Recent advances in geospatial modeling and machine learning algorithms have further enhanced the potential for integrating
multiple data sources to improve soil property predictions Il Digital soil mapping approaches combining radiometric data with
topographic variables, satellite imagery, and climate data have shown considerable promise for accurate soil texture estimation
81, However, the optimization of these integrated approaches for different landscape types and soil conditions remains an active
area of research [,

This study aims to develop and validate a comprehensive methodology for predictive soil texture mapping using airborne
radiometric data integrated with geospatial models. The specific objectives include: (1) evaluating the relationship between
gamma-ray spectrometry measurements and soil texture properties, (2) developing machine learning models for soil texture
prediction using multi-source geospatial data, and (3) assessing the accuracy and reliability of the proposed mapping approach
across diverse landscape conditions.
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2. Literature Review

2.1 Airborne Radiometric Surveys for Soil Mapping
Airborne gamma-ray spectrometry has been extensively used
for geological mapping and mineral exploration since the
1950s 19, The technique measures natural radioactivity from
the top 30-50 cm of the earth's surface, making it particularly
suitable for soil characterization applications ™. The three
primary radiometric channels (K, U, Th) provide information
about different aspects of soil composition and weathering
processes 22,

Potassium concentrations are strongly correlated with clay
content, as K-feldspar weathering produces clay minerals
such as illite and muscovite 131, Uranium mobility in soils is
influenced by organic matter content, pH conditions, and
redox environments, making it a useful indicator of soil
chemical properties ™. Thorium concentrations reflect the
presence of heavy minerals and resistant clay minerals,
providing information about soil parent material and
weathering intensity (11,

Several studies have demonstrated significant correlations
between radiometric measurements and soil texture
parameters. Wilford et al. *®! reported correlation coefficients
of 0.72 between potassium concentrations and clay content in
Australian soils. Similarly, Cook et al. ¥l found strong
relationships between radiometric ratios and soil particle size
distributions in agricultural landscapes. However, these
relationships can be influenced by factors such as soil
moisture, vegetation cover, and topographic effects [18],

2.2 Geospatial Modeling Approaches

Digital soil mapping has evolved rapidly with the
development of sophisticated statistical and machine learning
approaches for integrating multiple environmental covariates
(191, The scorpan model proposed by McBratney et al. [
provides a conceptual framework for soil property prediction
using soil, climate, organisms, relief, parent material, age,
and spatial position as environmental factors.

Machine learning algorithms such as random forest, support
vector machines, and artificial neural networks have shown
superior performance compared to traditional statistical
methods for soil property prediction 4. Random forest
algorithms are particularly well-suited for soil mapping
applications due to their ability to handle non-linear
relationships, manage missing data, and provide variable
importance measures 22,

The integration of multiple data sources through ensemble
modeling approaches has demonstrated improved prediction
accuracy and reduced uncertainty in soil property maps [,
Combining radiometric data with digital elevation models,
satellite imagery, and climate variables provides
complementary information about soil-forming factors and
processes 241,

3. Methodology

3.1 Study Area

The study was conducted in a 2,500 km? agricultural region
in southeastern Australia, characterized by diverse
topography ranging from coastal plains to undulating hills.
The area encompasses multiple soil types developed from
various parent materials including alluvial deposits,
weathered granite, and sedimentary rocks @3, Climate
conditions are Mediterranean with mean annual rainfall
varying from 400-800 mm across the study region 261,
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3.2 Data Acquisition and Processing

3.1 Airborne Radiometric Data

High-resolution airborne gamma-ray spectrometry data were
acquired using a helicopter-mounted system equipped with
large-volume sodium iodide detectors [,  Flight
specifications included 200 m line spacing, 80 m terrain
clearance, and 60 m/s ground speed. Raw spectrometry data
were processed to remove aircraft and cosmic background
radiation, apply dead-time corrections, and convert to ground
concentrations using standard calibration procedures 281,
The processed radiometric data provided concentrations of
potassium (% K), equivalent uranium (ppm eU), and
equivalent thorium (ppm eTh) at 50 m spatial resolution.
Additional radiometric ratios including Th/K, U/K, and U/Th
were calculated to enhance geological and pedological
interpretations 2%,

3.2.2 Ancillary Geospatial Data

Digital elevation models (DEMSs) at 25 m resolution were
used to derive topographic variables including slope, aspect,
curvature, topographic wetness index, and stream power
index % Landsat-8 satellite imagery provided spectral
reflectance data and vegetation indices including normalized
difference vegetation index (NDVI) and normalized
difference moisture index (NDMI) 11,

Climate data including mean annual temperature,
precipitation, and potential evapotranspiration were obtained
from interpolated meteorological station records [,
Geological maps provided information about bedrock
lithology and surficial deposits 321,

3.2.3 Soil Sampling and Laboratory Analysis

A stratified random sampling design was implemented to
collect 450 soil samples across the study area, with sampling
density varying according to landscape complexity and land
use patterns 34, Samples were collected from 0-20 cm depth
and analyzed for particle size distribution using the pipette
method following standard protocols I,

Quality control measures included duplicate analyses for
10% of samples and the use of certified reference materials
to ensure analytical accuracy 8. Soil texture classes were
determined according to the USDA classification system,
with additional focus on clay content percentage for
modeling purposes 7.,

3.3 Statistical Analysis and Modeling

3.3.1 Exploratory Data Analysis

Descriptive statistics and correlation analysis were performed
to examine relationships between radiometric measurements
and soil texture parameters 8, Principal component analysis
was applied to identify the most important radiometric
variables and reduce data dimensionality (9,

Spatial autocorrelation analysis using Moran's | statistics was
conducted to assess the spatial structure of soil texture
variations and optimize sampling strategies %, Variogram
analysis was performed to characterize spatial dependence
and guide interpolation procedures 4.

3.3.2 Machine Learning Model Development

Three machine learning algorithms were evaluated for soil
texture prediction: random forest (RF), support vector
machines (SVM), and artificial neural networks (ANN) 2,
Model training was performed using 70% of the available
samples, with the remaining 30% reserved for independent
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validation 31,

Hyperparameter optimization was conducted using grid
search with 5-fold cross-validation to identify optimal model
configurations ™. Feature selection techniques including
recursive feature elimination and permutation importance
were applied to identify the most predictive variables [*3],

3.3.3 Model Validation and Accuracy Assessment

Model performance was evaluated using multiple metrics
including root mean square error (RMSE), mean absolute
error (MAE), and coefficient of determination (R2) [°1,
Statistical significance testing was performed using paired t-
tests to compare model predictions with observed values [*7],
Spatial validation techniques including leave-one-out cross-
validation and spatial block cross-validation were
implemented to assess model robustness and avoid spatial
autocorrelation bias [8. Uncertainty quantification was
performed wusing bootstrap resampling and quantile
regression approaches 1,

4. Results and Discussion

4.1 Radiometric Data Characteristics

The airborne radiometric survey successfully captured spatial
variations in natural radioactivity across the study area.
Potassium concentrations ranged from 0.5% to 4.2% with a
mean value of 1.8% =* 0.7%. Equivalent uranium
concentrations varied from 0.8 to 6.5 ppm (mean: 2.4 £ 1.2
ppm), while equivalent thorium ranged from 2.1 to 18.7 ppm
(mean: 8.3 £ 3.4 ppm).

Strong spatial correlation was observed between radiometric
measurements and underlying geological formations. Areas
developed from granitic parent materials showed elevated
potassium and thorium concentrations, while alluvial
deposits exhibited lower overall radioactivity with higher
uranium/thorium ratios.

4.2 Soil Texture Distribution and Variability

Laboratory analysis revealed significant spatial variability in
soil texture across the study region. Clay content ranged from
8% to 62% with a mean of 28% * 14%. Sand fractions varied
from 15% to 78% (mean: 45% + 18%), while silt content
ranged from 12% to 45% (mean: 27% + 8%).

Soil texture distribution showed strong associations with
landscape position and parent material. Clay-rich soils
predominated in valley floors and areas developed from
weathered sedimentary rocks, while sandy soils were more
common on elevated positions and granitic terrains.

4.3 Correlation Analysis

Significant correlations were identified between radiometric
measurements and soil texture parameters. Potassium
concentrations showed the strongest relationship with clay
content (r = 0.68, p < 0.001), consistent with the association
between K-bearing minerals and clay formation processes.
Thorium concentrations exhibited moderate correlations with
both clay content (r = 0.52) and sand fractions (r = -0.49).
Radiometric ratios provided additional predictive information,
with Th/K ratios showing strong correlations with soil texture
variations (r = 0.61 for clay content). The U/Th ratio was
particularly useful for identifying organic-rich soils and areas
with distinct weathering patterns.

4.4 Machine Learning Model Performance
The random forest algorithm achieved the highest prediction
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accuracy for soil texture mapping, with R2 values of 0.76 for
clay content and 0.71 for sand fraction predictions. Cross-
validation results indicated robust model performance with
RMSE values of 6.2% for clay content and 8.1% for sand
fraction.

Support vector machines demonstrated comparable performance
with slightly higher computational requirements. Artificial
neural networks showed potential for capturing complex non-
linear relationships but required extensive hyperparameter
optimization and were more susceptible to overfitting.
Feature importance analysis revealed that potassium
concentrations, elevation, and slope were the most influential
variables for clay content prediction. For sand fraction
modeling, thorium concentrations and topographic wetness
index showed the highest importance scores.

4.5 Spatial Prediction and Mapping

The optimized random forest models were applied to
generate continuous soil texture maps at 50 m spatial
resolution across the entire study area. The resulting maps
successfully captured major soil texture patterns and
transitions between different landscape units.

Uncertainty maps were produced using bootstrap aggregation
to quantify prediction confidence. Higher uncertainty was
observed in areas with limited training data and complex
topographic conditions, providing valuable information for
future sampling strategies.

4.6 Validation and Accuracy Assessment

Independent validation using reserved test samples confirmed
the reliability of the soil texture predictions. Overall
classification accuracy for major texture classes exceeded
85%, with producer's and user's accuracies ranging from 78%
to 92% for different classes.

Spatial validation results indicated minimal bias in prediction
accuracy across different landscape positions and geological
settings. However, some systematic underestimation was
observed for extreme clay contents (>50%), suggesting the
need for additional training samples in these rare soil types.

5. Implications and Applications

The successful integration of airborne radiometric data with
geospatial modeling techniques demonstrates significant
potential for cost-effective soil texture mapping at landscape
scales. The developed methodology provides several advantages
over traditional soil mapping approaches including
comprehensive spatial coverage, reduced field sampling
requirements, and objective quantitative predictions.
Practical applications of the soil texture maps include
precision agriculture planning, irrigation system design, and
environmental impact assessment. The high spatial resolution
predictions enable field-scale management decisions while
maintaining landscape-level consistency.

The uncertainty quantification components of the methodology
provide valuable information for risk assessment and decision-
making processes. Areas with high prediction uncertainty can
be prioritized for additional sampling or monitoring
activities.

6. Limitations and Future Research

Several limitations should be considered when applying the
developed methodology. Radiometric measurements are
influenced by soil moisture conditions, which can affect
prediction accuracy during wet periods. Vegetation cover can

63|Page



Journal of Soil Future Research

also attenuate gamma-ray emissions, potentially reducing
signal strength in densely vegetated areas.

The depth of investigation for airborne radiometry (30-50
cm) may not represent soil texture variations at greater
depths, limiting applications for deep-rooted crops or
subsurface hydrology studies. Integration with ground-
penetrating radar or electromagnetic induction data could
address these limitations.

Future research directions include the development of
temporal monitoring capabilities using repeated radiometric
surveys to track soil texture changes due to erosion or
management practices. Integration with hyperspectral
imagery and soil spectroscopy data could further improve
prediction accuracy and provide additional soil property
information.

7. Conclusions

This study demonstrates the effectiveness of integrating
airborne radiometric data with advanced geospatial modeling
techniques for predictive soil texture mapping. The random
forest algorithm showed superior performance in combining
potassium, uranium, and thorium measurements with
topographic and environmental variables to predict soil
texture distributions.

Key findings include strong correlations between potassium
concentrations and clay content, the importance of
radiometric ratios for soil discrimination, and the value of
topographic variables for enhancing prediction accuracy. The
developed methodology achieved prediction accuracies
exceeding 85% for major soil texture classes while providing
comprehensive spatial coverage at 50 m resolution.

The research contributes to the advancement of digital soil
mapping by demonstrating the practical application of
airborne radiometry for agricultural and environmental
management applications. The integration of multiple data
sources and machine learning algorithms provides a robust
framework for soil property prediction that can be adapted to
different landscape conditions and soil types.

The results support the continued development of airborne
geophysical surveys for soil characterization and highlight
the potential for operational soil mapping programs using
these technologies. Future research should focus on temporal
monitoring capabilities and the integration of additional
remote sensing data sources to further improve prediction
accuracy and expand the range of soil properties that can be
mapped effectively.
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