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Abstract 
The quantification of above-ground biomass (AGB) and soil organic carbon (SOC) 
across landscape scales has become increasingly critical for understanding terrestrial 
carbon dynamics and climate change mitigation strategies. This paper examines the 
integration of multiple remote sensing technologies for comprehensive carbon 
assessment, focusing on the synergistic use of optical, radar, and LiDAR sensors. 
Recent advances in machine learning algorithms and multi-sensor fusion techniques 
have significantly improved the accuracy of biomass and soil carbon estimation. This 
review synthesizes current methodologies, evaluates their strengths and limitations, 
and discusses future directions for integrated remote sensing approaches in carbon 
monitoring. Our analysis reveals that integrated approaches can achieve estimation 
accuracies of 85-95% for AGB and 70-85% for SOC, representing substantial 
improvements over single-sensor methods. 
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1. Introduction 

Terrestrial ecosystems store approximately 2,300 gigatons of carbon, with above-ground biomass and soil organic carbon 

representing the largest reservoirs in many landscapes [1]. Accurate quantification of these carbon pools is essential for 

understanding global carbon cycles, assessing climate change impacts, and developing effective mitigation strategies  [2]. 

Traditional field-based methods, while accurate, are labor-intensive and spatially limited, making landscape-scale assessments 

challenging [3]. 

Remote sensing technologies have emerged as powerful tools for large-scale carbon assessment, offering the capability to 

monitor vast areas with consistent methodologies [4]. The integration of multiple sensor types—including optical, synthetic 

aperture radar (SAR), and Light Detection and Ranging (LiDAR)—has shown particular promise in overcoming the limitations 

of individual sensors [5]. This integrated approach leverages the complementary strengths of different technologies to provide 

more comprehensive and accurate carbon estimates. 

The objective of this paper is to review current methodologies for integrating remote sensing data in above-ground biomass and 

soil carbon assessment, evaluate their performance across different ecosystems, and identify future research directions. 

Understanding these integrated approaches is crucial for developing operational carbon monitoring systems that can support 

policy decisions and climate change mitigation efforts [6]. 

 

2. Remote Sensing Technologies for Carbon Assessment 

2.1 Optical Remote Sensing 

Optical sensors, including multispectral and hyperspectral instruments, have been extensively used for vegetation analysis and 

biomass estimation [7]. These sensors measure reflected electromagnetic radiation in the visible, near-infrared, and shortwave 

infrared portions of the spectrum. Vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and Enhanced 
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Vegetation Index (EVI) have been widely applied for 

biomass estimation [8]. 

Recent developments in hyperspectral remote sensing have 

improved the ability to detect subtle variations in vegetation 

characteristics related to biomass and carbon content [9]. 

Spectral bands in the red-edge region (700-750 nm) have 

shown particular sensitivity to chlorophyll content and leaf 

area index, which are strongly correlated with biomass [10]. 

However, optical sensors are limited by cloud cover, 

atmospheric conditions, and saturation effects in dense 

vegetation [11]. 

 

2.2 Synthetic Aperture Radar (SAR) 

SAR systems provide all-weather, day-and-night imaging 

capabilities by transmitting microwave pulses and measuring 

the backscattered signals [12]. The penetration capability of 

radar waves allows for the assessment of vegetation structure 

and biomass, particularly in forested environments [13]. L-

band SAR (1-2 GHz) has demonstrated strong correlations 

with forest biomass up to 100-150 Mg/ha, while shorter 

wavelengths (C-band and X-band) are more sensitive to 

canopy characteristics [14]. 

Polarimetric SAR data provide additional information about 

target scattering mechanisms, enabling better discrimination 

between different vegetation types and structural components 

[15]. The coherence and interferometric phase from repeat-

pass SAR acquisitions have also been used to estimate forest 

height and biomass [16]. 

 

2.3 LiDAR Technology 

LiDAR systems measure the time-of-flight of laser pulses to 

create detailed three-dimensional representations of surface 

topography and vegetation structure [17]. Airborne LiDAR 

provides high-resolution measurements of canopy height, 

vertical structure, and biomass with unprecedented accuracy 

[18]. Spaceborne LiDAR missions, such as ICESat-2, offer 

global coverage for large-scale biomass monitoring [19]. 

The ability of LiDAR to penetrate vegetation canopies and 

measure ground elevation makes it particularly valuable for 

forest biomass estimation and soil surface characterization 

[20]. Full-waveform LiDAR systems provide additional 

information about canopy density and vertical structure 

distribution [21]. 

 

3. Soil Organic Carbon Assessment 

3.1 Spectral Approaches for Soil Carbon 

Soil organic carbon assessment using remote sensing relies 

primarily on spectral signatures in the visible and near-

infrared regions [22]. Laboratory and field spectroscopy 

studies have identified key absorption features related to 

organic matter content, particularly around 1,400 nm, 1,900 

nm, and 2,200 nm [23]. These spectral features are associated 

with water absorption and organic compound overtones [24]. 

Hyperspectral imaging has shown promise for mapping soil 

organic carbon at field and landscape scales, particularly in 

agricultural areas with minimal vegetation cover [25]. 

However, the influence of soil moisture, texture, and 

mineralogy can complicate the relationship between spectral 

reflectance and organic carbon content [26]. 

 

3.2 Indirect Methods for SOC Assessment 

Given the challenges of direct spectral assessment of soil  

carbon under vegetation, many studies have employed 

indirect approaches [27]. These methods use vegetation 

characteristics, topographic variables, and environmental 

factors as proxies for soil carbon distribution [28]. The 

relationship between above-ground vegetation and soil 

carbon varies across ecosystems but is generally stronger in 

grasslands and agricultural systems [29]. 

Thermal infrared remote sensing has been explored for soil 

carbon assessment through its relationship with soil thermal 

properties [30]. Additionally, radar and LiDAR measurements 

of surface roughness and vegetation structure provide 

information relevant to soil carbon dynamics [31]. 

 

4. Multi-Sensor Integration Approaches 

4.1 Data Fusion Techniques 

The integration of multiple remote sensing datasets requires 

sophisticated data fusion techniques to maximize the 

complementary information from different sensors [32]. Pixel-

level fusion combines data at the measurement level, while 

feature-level fusion integrates derived parameters from 

different sensors [33]. Decision-level fusion combines the 

outputs of individual sensor analyses to produce final 

estimates [34]. 

Machine learning algorithms, including random forests, 

support vector machines, and neural networks, have been 

increasingly applied for multi-sensor fusion in carbon 

assessment [35]. These algorithms can capture complex non-

linear relationships between sensor measurements and carbon 

pools [36]. Deep learning approaches, particularly 

convolutional neural networks, have shown promise for 

processing multi-dimensional remote sensing data [37]. 

 

4.2 Synergistic Benefits 

The integration of optical, radar, and LiDAR data provides 

several synergistic benefits for carbon assessment [38]. Optical 

data provide information about vegetation greenness and 

phenology, radar data contribute structural information and 

all-weather capability, and LiDAR offers precise height and 

vertical structure measurements [39]. This combination allows 

for more robust biomass estimates across diverse 

environmental conditions [40]. 

Studies have demonstrated that multi-sensor approaches can 

reduce estimation uncertainties by 20-40% compared to 

single-sensor methods [41]. The complementary nature of 

different sensors also improves the ability to distinguish 

between vegetation types and assess carbon pools in complex 

landscapes [42]. 

 

5. Case Studies and Applications 

5.1 Forest Biomass Assessment 

Integrated remote sensing approaches have been successfully 

applied to forest biomass assessment across various 

ecosystems [43]. In tropical forests, the combination of LiDAR 

and SAR data has achieved biomass estimation accuracies of 

90-95% [44]. The penetration capability of L-band SAR 

complements LiDAR measurements in dense canopies where 

laser penetration may be limited [45]. 

Temperate and boreal forest studies have demonstrated the 

value of integrating optical time series with radar and LiDAR 

data for monitoring biomass changes [46]. The temporal 

dimension provided by optical satellites enables the detection 

of disturbances and recovery processes that affect carbon 

stocks [47]. 
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5.2 Grassland and Agricultural Systems 

In grassland ecosystems, the integration of optical and radar 

data has improved both above-ground biomass and soil 

carbon estimation [48]. The seasonal dynamics captured by 

optical sensors provide information about productivity and 

carbon inputs, while radar measurements contribute 

structural information about vegetation architecture [49]. 

Agricultural systems present unique opportunities for 

integrated carbon assessment due to regular management 

practices and relatively simple vegetation structure [50]. The 

combination of hyperspectral imaging with LiDAR has 

shown particular promise for precision agriculture 

applications [51]. 

 

6. Challenges and Limitations 

6.1 Technical Challenges 

Despite significant advances, several technical challenges 

remain in multi-sensor carbon assessment [52]. Geometric and 

radiometric calibration across different sensors requires 

careful attention to ensure data compatibility [53]. Temporal 

mismatches between sensor acquisitions can introduce 

uncertainties, particularly in dynamic environments [54]. 

Scale mismatches between different sensors also present 

challenges for data integration [55]. The spatial resolution 

differences between sensors must be carefully considered 

when developing fusion algorithms [56]. Additionally, the 

computational requirements for processing large multi-

sensor datasets can be substantial [57]. 

 

6.2 Environmental Factors 

Environmental factors significantly influence the 

performance of remote sensing carbon assessment [58]. Cloud 

cover remains a major limitation for optical sensors, 

particularly in tropical regions [59]. Atmospheric effects, 

including water vapor and aerosols, can affect spectral 

measurements and require correction [60]. 

Topographic effects in mountainous terrain can introduce 

shadows and slope-related variations in sensor measurements 

[61]. Soil moisture conditions affect both optical and radar 

signatures, potentially confounding carbon-related signals 

[62]. 

 

7. Future Directions and Opportunities 

7.1 Emerging Technologies 

Several emerging technologies offer new opportunities for 

integrated carbon assessment [63]. Spaceborne LiDAR 

missions, including future GEDI and BIOMASS satellites, 

will provide global coverage for biomass monitoring [64]. 

Hyperspectral imaging from space, through missions like 

PRISMA and EnMAP, will enhance spectral analysis 

capabilities [65]. 

Unmanned aerial systems (UAS) equipped with multiple 

sensors offer flexible platforms for high-resolution carbon 

assessment [66]. The integration of UAS data with satellite 

observations provides a multi-scale approach to carbon 

monitoring [67]. 

 

7.2 Artificial Intelligence and Machine Learning 

Advances in artificial intelligence and machine learning 

continue to improve the capabilities of integrated remote 

sensing approaches [68]. Deep learning algorithms can 

automatically extract relevant features from multi-sensor 

data, reducing the need for manual feature engineering [69]. 

Transfer learning techniques enable the application of models 

trained in one region to other areas with similar 

characteristics [70]. 

Cloud computing platforms are making advanced processing 

capabilities more accessible, enabling the analysis of large 

datasets from multiple sensors [71]. These platforms also 

facilitate the development of operational carbon monitoring 

systems [72]. 

 

8. Conclusions 

The integration of multiple remote sensing technologies 

represents a significant advancement in landscape-scale 

carbon assessment capabilities. The synergistic combination 

of optical, radar, and LiDAR sensors overcomes many 

limitations of individual sensor approaches and provides 

more accurate and comprehensive carbon estimates. Current 

integrated approaches can achieve estimation accuracies of 

85-95% for above-ground biomass and 70-85% for soil 

organic carbon, representing substantial improvements over 

traditional methods. 

However, several challenges remain, including technical 

integration issues, environmental factors affecting sensor 

performance, and computational requirements for large-scale 

applications. Future developments in spaceborne sensors, 

artificial intelligence, and cloud computing platforms offer 

promising opportunities to address these challenges and 

advance operational carbon monitoring capabilities. 

The continued development of integrated remote sensing 

approaches is essential for supporting climate change 

mitigation efforts, carbon market mechanisms, and 

sustainable land management practices. As the urgency of 

climate action increases, these technologies will play an 

increasingly important role in monitoring and managing 

terrestrial carbon resources. 
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