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1. Introduction

Terrestrial ecosystems store approximately 2,300 gigatons of carbon, with above-ground biomass and soil organic carbon
representing the largest reservoirs in many landscapes ™. Accurate quantification of these carbon pools is essential for
understanding global carbon cycles, assessing climate change impacts, and developing effective mitigation strategies [,
Traditional field-based methods, while accurate, are labor-intensive and spatially limited, making landscape-scale assessments
challenging 1.

Remote sensing technologies have emerged as powerful tools for large-scale carbon assessment, offering the capability to
monitor vast areas with consistent methodologies . The integration of multiple sensor types—including optical, synthetic
aperture radar (SAR), and Light Detection and Ranging (LiDAR)—has shown particular promise in overcoming the limitations
of individual sensors °l. This integrated approach leverages the complementary strengths of different technologies to provide
more comprehensive and accurate carbon estimates.

The objective of this paper is to review current methodologies for integrating remote sensing data in above-ground biomass and
soil carbon assessment, evaluate their performance across different ecosystems, and identify future research directions.
Understanding these integrated approaches is crucial for developing operational carbon monitoring systems that can support
policy decisions and climate change mitigation efforts (1,

2. Remote Sensing Technologies for Carbon Assessment

2.1 Optical Remote Sensing

Optical sensors, including multispectral and hyperspectral instruments, have been extensively used for vegetation analysis and
biomass estimation I']. These sensors measure reflected electromagnetic radiation in the visible, near-infrared, and shortwave
infrared portions of the spectrum. Vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and Enhanced
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Vegetation Index (EVI) have been widely applied for
biomass estimation [,

Recent developments in hyperspectral remote sensing have
improved the ability to detect subtle variations in vegetation
characteristics related to biomass and carbon content [,
Spectral bands in the red-edge region (700-750 nm) have
shown particular sensitivity to chlorophyll content and leaf
area index, which are strongly correlated with biomass [,
However, optical sensors are limited by cloud cover,
atmospheric conditions, and saturation effects in dense
vegetation (111,

2.2 Synthetic Aperture Radar (SAR)

SAR systems provide all-weather, day-and-night imaging
capabilities by transmitting microwave pulses and measuring
the backscattered signals 4, The penetration capability of
radar waves allows for the assessment of vegetation structure
and biomass, particularly in forested environments 23, |-
band SAR (1-2 GHz) has demonstrated strong correlations
with forest biomass up to 100-150 Mg/ha, while shorter
wavelengths (C-band and X-band) are more sensitive to
canopy characteristics 14,

Polarimetric SAR data provide additional information about
target scattering mechanisms, enabling better discrimination
between different vegetation types and structural components
(23] The coherence and interferometric phase from repeat-
pass SAR acquisitions have also been used to estimate forest
height and biomass [°],

2.3 LiDAR Technology

LiDAR systems measure the time-of-flight of laser pulses to
create detailed three-dimensional representations of surface
topography and vegetation structure 71, Airborne LiDAR
provides high-resolution measurements of canopy height,
vertical structure, and biomass with unprecedented accuracy
18] Spaceborne LiDAR missions, such as ICESat-2, offer
global coverage for large-scale biomass monitoring [*9,

The ability of LiDAR to penetrate vegetation canopies and
measure ground elevation makes it particularly valuable for
forest biomass estimation and soil surface characterization
201 Full-waveform LiDAR systems provide additional
information about canopy density and vertical structure
distribution (24,

3. Soil Organic Carbon Assessment

3.1 Spectral Approaches for Soil Carbon

Soil organic carbon assessment using remote sensing relies
primarily on spectral signatures in the visible and near-
infrared regions [?2. Laboratory and field spectroscopy
studies have identified key absorption features related to
organic matter content, particularly around 1,400 nm, 1,900
nm, and 2,200 nm 2%1, These spectral features are associated
with water absorption and organic compound overtones 24,
Hyperspectral imaging has shown promise for mapping soil
organic carbon at field and landscape scales, particularly in
agricultural areas with minimal vegetation cover @,
However, the influence of soil moisture, texture, and
mineralogy can complicate the relationship between spectral
reflectance and organic carbon content [61,

3.2 Indirect Methods for SOC Assessment
Given the challenges of direct spectral assessment of soil
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carbon under vegetation, many studies have employed
indirect approaches ?). These methods use vegetation
characteristics, topographic variables, and environmental
factors as proxies for soil carbon distribution 28, The
relationship between above-ground vegetation and soil
carbon varies across ecosystems but is generally stronger in
grasslands and agricultural systems 2,

Thermal infrared remote sensing has been explored for soil
carbon assessment through its relationship with soil thermal
properties %, Additionally, radar and LiDAR measurements
of surface roughness and vegetation structure provide
information relevant to soil carbon dynamics 34,

4. Multi-Sensor Integration Approaches

4.1 Data Fusion Techniques

The integration of multiple remote sensing datasets requires
sophisticated data fusion techniques to maximize the
complementary information from different sensors [*21. Pixel-
level fusion combines data at the measurement level, while
feature-level fusion integrates derived parameters from
different sensors [, Decision-level fusion combines the
outputs of individual sensor analyses to produce final
estimates [34],

Machine learning algorithms, including random forests,
support vector machines, and neural networks, have been
increasingly applied for multi-sensor fusion in carbon
assessment B3, These algorithms can capture complex non-
linear relationships between sensor measurements and carbon
pools [®.  Deep learning approaches, particularly
convolutional neural networks, have shown promise for
processing multi-dimensional remote sensing data 71,

4.2 Synergistic Benefits

The integration of optical, radar, and LiDAR data provides
several synergistic benefits for carbon assessment (381, Optical
data provide information about vegetation greenness and
phenology, radar data contribute structural information and
all-weather capability, and LiDAR offers precise height and
vertical structure measurements %, This combination allows
for more robust biomass estimates across diverse
environmental conditions (47,

Studies have demonstrated that multi-sensor approaches can
reduce estimation uncertainties by 20-40% compared to
single-sensor methods 4. The complementary nature of
different sensors also improves the ability to distinguish
between vegetation types and assess carbon pools in complex
landscapes [*21,

5. Case Studies and Applications

5.1 Forest Biomass Assessment

Integrated remote sensing approaches have been successfully
applied to forest biomass assessment across various
ecosystems 31, In tropical forests, the combination of LIDAR
and SAR data has achieved biomass estimation accuracies of
90-95% [ 4. The penetration capability of L-band SAR
complements LIDAR measurements in dense canopies where
laser penetration may be limited “°1,

Temperate and boreal forest studies have demonstrated the
value of integrating optical time series with radar and LiDAR
data for monitoring biomass changes 16l The temporal
dimension provided by optical satellites enables the detection
of disturbances and recovery processes that affect carbon
stocks (471,
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5.2 Grassland and Agricultural Systems

In grassland ecosystems, the integration of optical and radar
data has improved both above-ground biomass and soil
carbon estimation [“8l, The seasonal dynamics captured by
optical sensors provide information about productivity and
carbon inputs, while radar measurements contribute
structural information about vegetation architecture “°1,
Agricultural systems present unique opportunities for
integrated carbon assessment due to regular management
practices and relatively simple vegetation structure 5%, The
combination of hyperspectral imaging with LiDAR has
shown particular promise for precision agriculture
applications 54,

6. Challenges and Limitations

6.1 Technical Challenges

Despite significant advances, several technical challenges
remain in multi-sensor carbon assessment %2, Geometric and
radiometric calibration across different sensors requires
careful attention to ensure data compatibility 3. Temporal
mismatches between sensor acquisitions can introduce
uncertainties, particularly in dynamic environments 41,
Scale mismatches between different sensors also present
challenges for data integration B%, The spatial resolution
differences between sensors must be carefully considered
when developing fusion algorithms B¢, Additionally, the
computational requirements for processing large multi-
sensor datasets can be substantial 571,

6.2 Environmental Factors

Environmental  factors  significantly influence the
performance of remote sensing carbon assessment %81, Cloud
cover remains a major limitation for optical sensors,
particularly in tropical regions . Atmospheric effects,
including water vapor and aerosols, can affect spectral
measurements and require correction (6%,

Topographic effects in mountainous terrain can introduce
shadows and slope-related variations in sensor measurements
(61, Soil moisture conditions affect both optical and radar

signatures, potentially confounding carbon-related signals
[62]

7. Future Directions and Opportunities

7.1 Emerging Technologies

Several emerging technologies offer new opportunities for
integrated carbon assessment 3. Spaceborne LiDAR
missions, including future GEDI and BIOMASS satellites,
will provide global coverage for biomass monitoring [54.
Hyperspectral imaging from space, through missions like
PRISMA and EnMAP, will enhance spectral analysis
capabilities [6°],

Unmanned aerial systems (UAS) equipped with multiple
sensors offer flexible platforms for high-resolution carbon
assessment %61, The integration of UAS data with satellite
observations provides a multi-scale approach to carbon
monitoring (671,

7.2 Artificial Intelligence and Machine Learning

Advances in artificial intelligence and machine learning
continue to improve the capabilities of integrated remote
sensing approaches 8, Deep learning algorithms can
automatically extract relevant features from multi-sensor
data, reducing the need for manual feature engineering [6°,
Transfer learning techniques enable the application of models
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trained in one region to other areas with similar
characteristics [,

Cloud computing platforms are making advanced processing
capabilities more accessible, enabling the analysis of large
datasets from multiple sensors 1, These platforms also
facilitate the development of operational carbon monitoring
systems [2],

8. Conclusions

The integration of multiple remote sensing technologies
represents a significant advancement in landscape-scale
carbon assessment capabilities. The synergistic combination
of optical, radar, and LiDAR sensors overcomes many
limitations of individual sensor approaches and provides
more accurate and comprehensive carbon estimates. Current
integrated approaches can achieve estimation accuracies of
85-95% for above-ground biomass and 70-85% for soil
organic carbon, representing substantial improvements over
traditional methods.

However, several challenges remain, including technical
integration issues, environmental factors affecting sensor
performance, and computational requirements for large-scale
applications. Future developments in spaceborne sensors,
artificial intelligence, and cloud computing platforms offer
promising opportunities to address these challenges and
advance operational carbon monitoring capabilities.

The continued development of integrated remote sensing
approaches is essential for supporting climate change
mitigation efforts, carbon market mechanisms, and
sustainable land management practices. As the urgency of
climate action increases, these technologies will play an
increasingly important role in monitoring and managing
terrestrial carbon resources.
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