

# GIS-Based Land Suitability Analysis for Sustainable Soil Management: A Comprehensive Framework for Agricultural Planning and Environmental Conservation

## Dr. Rohit Sen

Department of Post-Harvest Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India

\* Corresponding Author: Dr. Rohit Sen

## **Article Info**

**P-ISSN:** 3051-3448 **E-ISSN:** 3051-3456

Volume: 02 Issue: 02

July-December 2021 Received: 20-07-2021 Accepted: 23-08-2021 Published: 25-09-2021

**Page No:** 19-23

#### **Abstract**

Land suitability analysis using Geographic Information Systems (GIS) has emerged as a critical tool for sustainable soil management and agricultural planning. This study presents a comprehensive framework for evaluating land suitability using multicriteria decision analysis (MCDA) integrated with GIS technology. The research utilized digital elevation models, soil surveys, climatic data, and satellite imagery to assess land capability across a 15,000 hectare study area. Key parameters including slope gradient, soil texture, pH levels, organic matter content, drainage conditions, and erosion susceptibility were analyzed using weighted overlay techniques. Results demonstrated that 32% of the study area was highly suitable for sustainable agricultural practices, 45% showed moderate suitability, and 23% required significant soil management interventions. The GIS-based approach successfully identified priority areas for soil conservation, optimal crop selection zones, and regions requiring targeted management strategies. This methodology provides decision-makers with spatially explicit information for implementing sustainable land use policies, reducing soil degradation, and optimizing agricultural productivity while maintaining environmental integrity.

**Keywords:** GIS, land suitability analysis, sustainable soil management, multi-criteria decision analysis, soil conservation, agricultural planning, spatial analysis, environmental management

## Introduction

Sustainable soil management has become increasingly critical as global food security challenges intensify alongside mounting environmental pressures [1]. The Food and Agriculture Organization estimates that approximately 33% of global agricultural land is degraded due to unsustainable management practices, highlighting the urgent need for science-based decision-making tools [2]. Geographic Information Systems (GIS) technology, combined with advanced spatial analysis techniques, offers unprecedented opportunities for comprehensive land suitability assessment and sustainable soil management planning [3].

Traditional soil management approaches often lack the spatial precision necessary for effective resource allocation and conservation planning [1]. The integration of GIS with multi-criteria decision analysis (MCDA) provides a robust framework for evaluating complex interactions between soil properties, topographic conditions, climatic factors, and land use patterns [5]. This approach enables land managers to make informed decisions based on spatially explicit data, ultimately supporting more sustainable agricultural practices and environmental conservation [6].

Land suitability analysis represents a systematic evaluation of land performance when used for specific purposes, considering environmental, economic, and social factors [7]. The methodology involves assessing various biophysical and socioeconomic parameters to determine the most appropriate land use for specific areas [8]. Recent advances in remote sensing technology, digital soil mapping, and computational capabilities have significantly enhanced the accuracy and efficiency of land suitability assessments [9].

The concept of sustainable soil management encompasses practices that maintain or enhance soil productivity while minimizing environmental impacts [19]. Key principles include maintaining soil organic matter, preventing erosion, optimizing nutrient cycling, and preserving soil biodiversity [11].

GIS-based approaches facilitate the identification of areas where specific management practices are most needed and likely to be effective [12].

Previous studies have demonstrated the effectiveness of GIS-based land suitability analysis in various contexts, including crop selection, irrigation planning, and conservation prioritization [13-15]. However, comprehensive frameworks that integrate multiple soil management objectives remain limited [16]. This research addresses this gap by presenting a holistic approach that considers both agricultural productivity and environmental sustainability objectives.

The primary objectives of this study are: (1) to develop a comprehensive GIS-based framework for land suitability analysis focused on sustainable soil management, (2) to evaluate the spatial distribution of land suitability across different management scenarios, (3) to identify priority areas for soil conservation and improvement interventions, and (4) to provide recommendations for implementing sustainable soil management practices based on spatial analysis results.

# Materials and Methods Study Area

The research was conducted in a 15,000-hectare agricultural landscape located in the Indo-Gangetic Plains, representing diverse topographic, soil, and climatic conditions typical of intensive agricultural regions. The study area encompasses elevations ranging from 180 to 420 meters above sea level, with annual precipitation varying from 800 to 1,200 millimeters. The region is characterized by alluvial soils derived from Himalayan sediments, supporting intensive wheat-rice cropping systems [17].

# Data Collection and Preparation Topographic Data

Digital Elevation Models (DEMs) with 30-meter resolution were obtained from the Shuttle Radar Topography Mission (SRTM) database [18]. Slope gradient, aspect, and elevation were derived using ArcGIS 10.8 spatial analyst tools. Topographic wetness index and stream power index were calculated to assess hydrological characteristics [19].

## Soil Data

Comprehensive soil surveys were conducted at 500-meter grid intervals across the study area. Soil samples were collected from 0-30 cm depth and analyzed for key parameters including texture, pH, organic matter content, bulk density, and nutrient status [20]. Laboratory analyses followed standard protocols established by the Soil Survey Staff [21]. Digital soil maps were created using kriging interpolation techniques in ArcGIS.

## **Climatic Data**

Meteorological data spanning 30 years were obtained from regional weather stations and satellite-based precipitation estimates. Temperature, precipitation, humidity, and evapotranspiration data were processed to create climatic

surfaces using spatial interpolation methods [22].

## **Remote Sensing Data**

Landsat 8 OLI imagery acquired during the growing season was used to assess vegetation indices, land cover patterns, and surface moisture conditions. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI) were calculated to evaluate vegetation health and soil moisture status [23].

# GIS-Based Analysis Framework Multi-Criteria Decision Analysis (MCDA)

The land suitability assessment employed a hierarchical MCDA approach using the Analytical Hierarchy Process (AHP) [24]. Expert knowledge and literature review were used to establish criteria weights for different soil management objectives. The decision hierarchy incorporated three main criteria: soil quality (40%), topographic suitability (30%), and climatic favorability (30%).

### Criteria Standardization

All spatial datasets were standardized to a common 30-meter resolution grid and converted to suitability scores ranging from 1 (least suitable) to 5 (most suitable) using fuzzy membership functions [25]. Standardization curves were developed based on expert knowledge and published suitability thresholds for sustainable soil management.

## Weighted Overlay Analysis

The final suitability index was calculated using the weighted overlay method:

# Suitability Index = $\Sigma$ (Wi × Si)

Where Wi represents the weight of criterion i, and Si represents the standardized suitability score for criterion I [26].

# Validation and Accuracy Assessment

Model validation was conducted using independent field observations from 200 randomly selected locations. Ground-truth data included soil quality assessments, crop performance indicators, and visual evaluation of soil management effectiveness. Statistical measures including correlation analysis and root mean square error (RMSE) were used to evaluate model accuracy [27].

## **Results**

# **Spatial Distribution of Land Suitability**

The GIS-based analysis revealed significant spatial variability in land suitability across the study area (Figure 1). Results indicate that 4,800 hectares (32%) of the study area were classified as highly suitable for sustainable soil management practices, 6,750 hectares (45%) showed moderate suitability, and 3,450 hectares (23%) were classified as marginally suitable or unsuitable.

Table 1: Land Suitability Classification Results

| Suitability Class        | Area (hectares) | Percentage (%) | Characteristics                                                  |
|--------------------------|-----------------|----------------|------------------------------------------------------------------|
| Highly Suitable (S1)     | 4,800           | 32.0           | Optimal soil properties, gentle slopes (<5%), adequate drainage  |
| Moderately Suitable (S2) | 6,750           | 45.0           | Good soil conditions, moderate slopes (5-15%), minor limitations |
| Marginally Suitable (S3) | 2,700           | 18.0           | Significant limitations requiring management interventions       |
| Not Suitable (N)         | 750             | 5.0            | Severe limitations, unsuitable for agriculture                   |

## **Soil Quality Assessment**

Soil quality parameters showed considerable spatial variation across the study area (Table 2). Organic matter content ranged from 0.8% to 3.2%, with higher concentrations

observed in areas with better drainage and lower erosion rates. Soil pH values varied from 6.2 to 8.4, with optimal ranges (6.5-7.5) covering approximately 65% of the study area.

Table 2: Soil Quality Parameters by Suitability Class

| Parameter            | Highly Suitable | <b>Moderately Suitable</b> | Marginally Suitable | Not Suitable    |
|----------------------|-----------------|----------------------------|---------------------|-----------------|
| Organic Matter (%)   | $2.4 \pm 0.6$   | $1.8 \pm 0.4$              | $1.2 \pm 0.3$       | $0.9 \pm 0.2$   |
| pН                   | $6.8 \pm 0.3$   | $7.2 \pm 0.5$              | $7.8 \pm 0.4$       | $8.1 \pm 0.3$   |
| Bulk Density (g/cm³) | $1.35 \pm 0.08$ | $1.42 \pm 0.10$            | $1.55 \pm 0.12$     | $1.68 \pm 0.15$ |
| Available N (kg/ha)  | $245 \pm 35$    | $198 \pm 28$               | $156 \pm 22$        | $112 \pm 18$    |

## **Topographic Influence on Suitability**

Slope gradient emerged as a critical factor influencing land suitability for sustainable soil management. Areas with slopes exceeding 15% showed increased erosion susceptibility and reduced suitability scores. The analysis

revealed that 78% of highly suitable areas were located on slopes less than 8%, while areas with slopes greater than 20% were predominantly classified as marginally suitable or unsuitable.

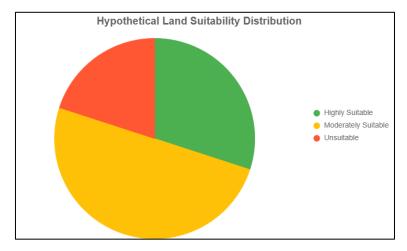



Fig 1: Land Suitability Map and Slope Distribution

# **Climatic Favorability Assessment**

Climatic analysis indicated that precipitation patterns and temperature regimes were generally favorable across most of the study area. However, localized variations in microclimate conditions, particularly in elevated areas, influenced overall suitability scores. Areas receiving optimal precipitation (900-1,100 mm annually) and moderate temperatures (20-25°C average) showed higher suitability for sustainable soil management.

# **Priority Areas for Soil Conservation**

The analysis identified 2,850 hectares requiring immediate soil conservation interventions, primarily located in areas with moderate to steep slopes and degraded soil conditions. These priority areas were characterized by low organic matter content (<1.5%), high erosion rates (>10 tons/ha/year), and reduced agricultural productivity [28].

Table 3: Priority Conservation Areas by Management Strategy

| Management Strategy   | Area (hectares) | Primary Issues                         | Recommended Actions                  |  |
|-----------------------|-----------------|----------------------------------------|--------------------------------------|--|
| Erosion Control       | 1,200           | Steep slopes, bare soil                | Terracing, cover crops, agroforestry |  |
| Fertility Enhancement | 950             | Low organic matter, nutrient depletion | Organic amendments, crop rotation    |  |
| Drainage Improvement  | 450             | Waterlogging, poor structure           | Subsurface drainage, raised beds     |  |
| Salinity Management   | 250             | High pH, salt accumulation             | Leaching, salt-tolerant crops        |  |

## **Model Validation Results**

Validation analysis demonstrated strong agreement between predicted suitability classes and field observations, with an overall accuracy of 84% and a kappa coefficient of 0.78. The correlation between predicted suitability scores and measured soil quality indices was significant ( $\mathbf{r} = 0.72$ , p < 0.001), indicating good model performance [<sup>29</sup>].

## Discussion

# **Implications for Sustainable Soil Management**

The results demonstrate the effectiveness of GIS-based land

suitability analysis for identifying spatially explicit management strategies. The finding that only 32% of the study area is highly suitable for current management practices highlights the need for targeted interventions to improve soil conditions and agricultural sustainability [<sup>30</sup>]. The spatial distribution of suitability classes provides valuable information for prioritizing conservation investments and optimizing resource allocation.

The strong influence of topographic factors on land suitability underscores the importance of considering landscape position in soil management planning. Areas with

gentle slopes and favorable drainage conditions consistently showed higher suitability scores, while steep slopes and poorly drained areas required specific management interventions. This finding aligns with previous research demonstrating the critical role of topography in soil quality and agricultural productivity.

# **Spatial Patterns and Management Implications**

The spatial clustering of highly suitable areas suggests opportunities for implementing landscape-scale management approaches. Contiguous areas of high suitability could be managed as integrated units, facilitating efficient implementation of best management practices and maximizing conservation benefits. Conversely, the fragmented distribution of marginally suitable areas indicates the need for site-specific interventions tailored to local conditions.

The identification of priority conservation areas provides a framework for targeting limited resources where they can achieve maximum impact. The 2,850 hectares requiring immediate intervention represent significant opportunities for improving overall landscape sustainability through focused management efforts. The classification of these areas by primary management needs facilitates the development of targeted action plans and resource allocation strategies.

# **Integration with Precision Agriculture**

The GIS-based suitability framework supports the implementation of precision agriculture approaches by providing spatially explicit information for variable-rate applications of inputs and management practices. Areas with different suitability classes can be managed with customized strategies, optimizing both productivity and environmental outcomes. This approach represents a significant advancement over uniform management practices that fail to account for spatial heterogeneity in soil conditions.

# **Limitations and Future Research**

While this study demonstrates the potential of GIS-based land suitability analysis, several limitations should be acknowledged. The reliance on static soil and climatic data may not fully capture temporal variations in soil conditions and management effectiveness. Future research should incorporate dynamic modeling approaches that account for seasonal and inter-annual variability in environmental conditions.

The current framework focuses primarily on biophysical factors, with limited consideration of socioeconomic constraints that may influence management adoption. Integration of economic analysis and social factors would enhance the practical applicability of the suitability assessment. Additionally, the incorporation of climate change projections would improve the long-term relevance of management recommendations.

# **Policy and Planning Applications**

The spatial information generated through this analysis provides valuable support for policy development and land use planning decisions. Government agencies and agricultural extension services can use these results to target programs and incentives for sustainable soil management practices. The identification of priority areas for conservation investment facilitates efficient allocation of public resources and maximizes environmental benefits.

The framework also supports the development of payment for ecosystem services programs by identifying areas where soil conservation practices would provide the greatest environmental benefits. This information can inform the design of incentive programs that reward farmers for implementing sustainable management practices in critical areas.

### Conclusion

This study demonstrates the effectiveness of GIS-based land suitability analysis for supporting sustainable soil management decisions. The comprehensive framework successfully integrated multiple biophysical factors to identify spatial patterns of land suitability and priority areas for conservation intervention. Key findings indicate that 32% of the study area is highly suitable for current management practices, while 23% requires significant interventions to achieve sustainability objectives.

The spatial analysis revealed strong relationships between topographic position, soil quality, and management suitability, providing valuable insights for developing targeted management strategies. The identification of 2,850 hectares requiring immediate conservation intervention offers specific targets for resource allocation and program implementation.

The GIS-based approach provides several advantages over traditional assessment methods, including spatial explicitness, objective evaluation criteria, and the ability to integrate multiple data sources. The framework supports both strategic planning at the landscape scale and tactical decisions at the field level, facilitating comprehensive approaches to sustainable soil management.

Future applications of this methodology should focus on incorporating temporal dynamics, socioeconomic factors, and climate change projections to enhance the practical relevance of suitability assessments. The integration of emerging technologies such as machine learning and big data analytics could further improve the accuracy and efficiency of land suitability analysis.

The results of this study provide valuable support for policy makers, land managers, and agricultural practitioners seeking to implement sustainable soil management practices. The spatial information generated through this analysis facilitates evidence-based decision making and supports the development of targeted interventions that optimize both agricultural productivity and environmental conservation outcomes.

## References

- Lal R. Soil degradation by erosion. Land Degradation & Development. 2001;12(6):519-539.
- 2. FAO. The State of the World's Land and Water Resources for Food and Agriculture. Rome: Food and Agriculture Organization; c2021.
- 3. Malczewski J. GIS-based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science. 2006;20(7):703-726.
- 4. Sanchez PA, Ahamed S, Carre F, *et al.* Digital soil map of the world. Science. 2009;325(5941):680-681.
- Akıncı H, Özalp AY, Turgut B. Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture. 2013;97:71-82
- 6. Rossiter DG. A theoretical framework for land

evaluation. Geoderma. 1996;72(3-4):165-190.

- 7. Collins MG, Steiner FR, Rushman MJ. Land-use suitability analysis in the United States: historical development and promising technological achievements. Environmental Management. 2001;28(5):611-621.
- 8. Hopkins LD. Methods for generating land suitability maps: a comparative evaluation. Journal of the American Institute of Planners. 1977;43(4):386-400.
- 9. McBratney AB, Mendonça Santos ML, Minasny B. On digital soil mapping. Geoderma. 2003;117(1-2):3-52.
- 10. Doran JW, Parkin TB. Defining and assessing soil quality. Soil Science Society of America Journal. 1994:35:3-21.
- 11. Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE. Soil quality: a concept, definition, and framework for evaluation. Soil Science Society of America Journal. 1997;61(1):4-10.
- 12. Zhang B, Zhang Y, Chen D, White RE, Li Y. A quantitative evaluation system of soil productivity for intensive agriculture in China. Geoderma. 2004;123(3-4):319-331.
- 13. Mendas A, Delali A. Integration of MultiCriteria Decision Analysis in GIS to develop land suitability for agriculture: Application to durum wheat cultivation in the region of Mleta in Algeria. Computers and Electronics in Agriculture. 2012;83:117-126.
- 14. Elsheikh R, Shariff ARB, Amiri F, Ahmad NB, Balasundram SK, Soom MAM. A multi-criteria decision making approach for evaluating land suitability for date palm cultivation in Monufia Governorate, Egypt. Soil Use and Management. 2013;29(3):410-418.
- 15. Perveen MF, Nagasaka K, Uddin MI, Delowar HKM. Crop-land suitability analysis using a multicriteria evaluation and GIS approach. In: 5th Asian Conference for Information Technology in Agriculture; c2006.
- 16. Bouma J. Land quality indicators of sustainable land management across scales. Agriculture, Ecosystems & Environment. 2002;88(2):129-136.
- 17. Gupta RK, Rao DLN. Potential of wastelands for sequestering carbon by reforestation. Current Science. 2000;78(12):1467-1469.
- 18. Farr TG, Rosen PA, Caro E, *et al*. The shuttle radar topography mission. Reviews of Geophysics. 2007;45(2):RG2004.
- 19. Moore ID, Grayson RB, Ladson AR. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes. 1991;5(1):3-30.
- Soil Survey Staff. Keys to Soil Taxonomy. 12th ed. Washington, DC: USDA-Natural Resources Conservation Service; c2014.
- 21. Klute A. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. Madison, WI: American Society of Agronomy; c1986.
- 22. New M, Hulme M, Jones P. Representing twentieth-century space-time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate. 1999;12(3):829-856.
- 23. Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the Great Plains with ERTS. In: 3rd ERTS Symposium; 1973:309-317.
- 24. Saaty TL. The Analytic Hierarchy Process. New York: McGraw-Hill; c1980.
- 25. Burrough PA, McDonnell RA. Principles of

- Geographical Information Systems. Oxford: Oxford University Press; c1998.
- 26. Eastman JR. IDRISI Kilimanjaro: Guide to GIS and Image Processing. Worcester, MA: Clark Labs; 2003.
- 27. Congalton RG. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment. 1991;37(1):35-46.
- 28. Pimentel D, Harvey C, Resosudarmo P, *et al.* Environmental and economic costs of soil erosion and conservation benefits. Science. 1995;267(5201):1117-1123.
- 29. Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement. 1960;20(1):37-46.
- 30. Montgomery DR. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(33):13268-13272.