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1. Introduction

Soil erosion constitutes a fundamental threat to global food security and environmental sustainability, affecting approximately
1.5 billion people worldwide and causing annual economic losses exceeding $400 billion 1. The process involves the
detachment, transport, and deposition of soil particles through water and wind action, leading to the gradual degradation of fertile
topsoil essential for agricultural productivity [, In developing countries, soil erosion rates often exceed natural soil formation
rates by 10-40 times, creating an unsustainable cycle of land degradation [,

Traditional methods for assessing soil erosion, including field surveys and experimental plots, while accurate, are time-
consuming, labor-intensive, and limited in spatial coverage . The advent of remote sensing technologies and Geographic
Information Systems (GIS) has revolutionized erosion assessment capabilities, enabling comprehensive spatial analysis across
large watersheds with improved cost-effectiveness and temporal monitoring capabilities [,

The Revised Universal Soil Loss Equation (RUSLE), developed by Renard et al. [¢], represents the most widely adopted empirical
model for predicting sheet and rill erosion. The model estimates average annual soil loss through the multiplicative relationship:

A=RxKxLSxCxP
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Where A represents average annual soil loss (t ha™ yr'), R is
rainfall erosivity factor (MJ mm ha™ h™ yr), K is soil
erodibility factor (t h MJ™' mm™), LS is slope length and
steepness factor (dimensionless), C is cover management
factor (dimensionless), and P is support practice factor
(dimensionless) [,

The integration of remote sensing with RUSLE has gained
significant attention due to its ability to provide spatially
distributed input parameters essential for erosion modeling
el Satellite imagery enables the extraction of vegetation
indices, land use classifications, and topographic variables,
while meteorological data supports rainfall erosivity
calculations 1. This synergistic approach has been
successfully applied in various geographical contexts, from
tropical watersheds ['! to Mediterranean environments [,
Recent advances in remote sensing platforms, including high-
resolution optical sensors and synthetic aperture radar (SAR)
systems, have enhanced the precision of erosion parameter
estimation [21, Machine learning algorithms and cloud
computing platforms have further improved the efficiency of
large-scale erosion assessments [31, However, challenges
remain in accurately parameterizing RUSLE factors across
diverse environmental conditions and validating model
outputs against ground truth measurements 4],

The primary objective of this study is to develop and
implement an integrated remote sensing-RUSLE framework
for comprehensive soil erosion risk assessment. Specific
objectives include: (1) deriving RUSLE parameters using
multi-temporal satellite imagery and ancillary datasets, (2)
generating high-resolution spatial maps of erosion risk, (3)
analyzing the spatial distribution and controlling factors of
soil erosion, and (4) validating model predictions through
field measurements and statistical analysis.

2. Materials and Methods

2.1 Study Area

The research was conducted in the Bhima River watershed,
located in the Deccan Plateau region of peninsular India
(17°10'N to 18°45'N latitude and 74°15'E to 76°30'E
longitude). The watershed covers an area of 2,450 km2 and
represents a typical semi-arid environment characterized by
undulating topography, seasonal rainfall patterns, and mixed
land use systems [s1, Elevation ranges from 450 m to 1,200
m above sea level, with an average slope gradient of 8.5°. The
climate is semi-arid tropical with distinct wet (June-
September) and dry (October-May) seasons. Annual
precipitation varies from 400-800 mm, with high inter-annual
variability (e,

2.2 Data Sources and Acquisition

Multi-temporal satellite imagery was acquired from Landsat

8 OLI (Operational Land Imager) and Sentinel-2 MSI

(MultiSpectral Instrument) sensors for the period 2018-2023.

A total of 45 cloud-free images were selected, covering

different seasons to capture temporal variations in vegetation

cover and land use patterns ['7), Additional datasets included:

= SRTM (Shuttle Radar Topography Mission) 30-meter
digital elevation model for topographic analysis

= Daily precipitation data from 25 meteorological stations
within and surrounding the watershed

= Soil surveys and pedological maps at 1:50,000 scale
from the National Bureau of Soil Survey

= Land use/land cover maps from the Indian Space
Research Organisation
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= Field validation data collected through stratified random
sampling (n=150 plots)

2.3 RUSLE Parameter Derivation

2.3.1 Rainfall Erosivity Factor (R)

The rainfall erosivity factor was calculated using the
Modified Fournier Index (MFI) approach [#l:

R =0.73 x MFI™1.847

Where MFI = Z(Pi*/P), Pi represents monthly precipitation,
and P is annual precipitation. Daily precipitation data from
meteorological stations were interpolated using Kkriging

interpolation to generate spatially distributed R-factor maps
[19]

2.3.2 Soil Erodibility Factor (K)

Soil erodibility values were derived from soil texture, organic
matter content, structure, and permeability data obtained
from soil surveys. The K-factor was calculated using the
Williams et al. 20 equation:

K = 0.00417 x OM~(-0.0405) x (silt + vfs)™1.4845 x
(sand/clay)”~0.5878

Where OM is organic matter percentage, silt and vfs
represent silt and very fine sand content, respectively.

2.3.3 Topographic Factor (LS)
The LS-factor was computed from the SRTM DEM using the
approach of Moore and Burch [1:

LS = (FA/22.1)™m x (sin $/0.09)"n

Where FA is flow accumulation, § is slope angle in radians,
and m and n are empirical constants (0.6 and 1.3,
respectively).

2.3.4 Cover Management Factor (C)

The C-factor was derived from NDV1 values calculated from
satellite imagery using the relationship proposed by Durigon
et al. [22;

C = exp(-2 x NDV1/(1-NDVI))

Seasonal variations in vegetation cover were incorporated by
calculating mean NDVI values across different phenological
periods 23],

2.3.5 Support Practice Factor (P)

P-factor values were assigned based on land use classification
and conservation practices identified through visual
interpretation of high-resolution imagery and field surveys.
Values ranged from 0.1 for terraced agricultural lands to 1.0
for areas without conservation measures 4],

2.4 Model Implementation and Validation

The RUSLE model was implemented in Google Earth Engine
cloud computing platform, enabling efficient processing of
large datasets and temporal analysis 251, Soil erosion risk was
classified into five categories: very low (0-5 t ha™ yr'), low
(5-10 t ha™! yr'), moderate (10-15 t ha™ yr'), high (15-25t
ha™' yr), and very high (>25 t ha™* yr ") B¢l,

Model validation was conducted through comparison with
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field measurements using erosion pins, sediment traps, and
137Cs techniques across 150 validation plots. Statistical
metrics including coefficient of determination (R?), root
mean square error (RMSE), and Nash-Sutcliffe efficiency
(NSE) were employed to assess model performance 271,

3. Results
3.1 Spatial Distribution of RUSLE Factors

www.soilfuturejournal.com

The spatial analysis of RUSLE factors revealed significant
heterogeneity across the watershed (Table 1). Rainfall
erosivity (R-factor) showed strong spatial gradients, ranging
from 2,850 MJ mm ha™' h™' yr! in the eastern regions to 4,720
MJ mm ha™' h™" yr' in the western highlands. Soil erodibility
(K-factor) varied from 0.08 to 0.45 t h MJ™' mm™, with
highest values associated with sandy loam soils in
agricultural areas.

Table 1: Descriptive statistics of RUSLE factors across the study watershed

Factor Units Mean Std Dev Min Max CV (%)
R MJ mm ha' h™! yr! 3,450 485 2,850 4,720 14.1
K thMJ"' mm™ 0.28 0.08 0.08 0.45 28.6
LS dimensionless 4.8 3.2 0.5 18.9 66.7
C dimensionless 0.42 0.31 0.02 0.98 73.8
P dimensionless 0.65 0.28 0.10 1.00 43.1

The topographic factor (LS) exhibited the highest spatial
variability (CV = 66.7%), with values ranging from 0.5 on
gentle slopes to 18.9 on steep hillslopes. Cover management
factor (C) showed strong seasonal variations, with minimum
values (0.02-0.15) during peak vegetation periods and
maximum values (0.85-0.98) during dry seasons in sparsely
vegetated areas.

3.2 Soil Erosion Risk Assessment

The integrated RUSLE analysis revealed that annual soil loss
rates across the watershed ranged from 0.8 to 47.3 tha™ yr’,
with a mean value of 12.4 t ha™ yr! (Figure 1). The spatial
distribution of erosion risk showed distinct patterns related to
topography, land use, and vegetation cover.

Table 2: Area distribution of soil erosion risk classes

Risk Class Soil Loss Rate (t ha™ yr™) Area (km?) Percentage (%)
Very Low 0-5 612 25.0
Low 5-10 696 28.4
Moderate 10-15 304 12.4
High 15-25 515 21.0
Very High >25 323 13.2

Approximately 34.2% of the watershed area (838 km?) was
classified as high to very high erosion risk, predominantly
located in steep terrain with sparse vegetation cover and
intensive agricultural activities. Moderate risk areas covered
12.4% of the watershed, while low to very low risk areas
encompassed 53.4% of the total area.

3.3 Land Use-Specific Erosion Analysis

Analysis of erosion rates across different land use categories
revealed significant variations (Table 3). Agricultural lands
exhibited the highest mean erosion rates (18.7 t ha™ yr™"),
particularly in areas with row crops and inadequate
conservation practices. Degraded forests showed elevated
erosion rates (15.2 t ha™ yr!) compared to dense forests (3.8
tha! yr).

Table 3: Mean soil erosion rates by land use category

Land Use Category | Area (km?) | Mean Erosion Rate (t ha™ yr') | Standard Deviation
Dense Forest 485 3.8 2.1
Degraded Forest 392 15.2 8.4
Agricultural Land 1,156 18.7 12.3
Grassland 287 8.9 6.2
Barren Land 98 24.6 15.7
Water Bodies 32 0.5 0.3

3.4 Correlation Analysis and Controlling Factors

Statistical analysis revealed strong correlations between soil
erosion rates and various environmental factors (Table 4).
Slope gradient showed the strongest positive correlation (r =

0.78, p < 0.001), followed by topographic wetness index (r =
-0.71, p < 0.001). Vegetation cover, represented by mean
annual NDVI, exhibited a strong negative correlation (r = -
0.82, p < 0.001) with erosion rates.
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Table 4: Correlation coefficients between soil erosion and environmental variables

Variable Correlation Coefficient (r) | p-value | Significance
Slope Gradient 0.78 <0.001 il
NDVI -0.82 <0.001 el
Elevation -0.45 <0.001 fioel
Topographic Wetness Index -0.71 <0.001 ikl
Distance to Streams -0.38 <0.001 el
Soil Clay Content -0.52 <0.001 il

3.5 Model Validation and Accuracy Assessment
Validation of RUSLE predictions against field measurements
demonstrated  satisfactory model performance. The
coefficient of determination (R?) between predicted and
observed erosion rates was 0.73, with RMSE of 4.8 tha™! yr!
and NSE of 0.68. The model showed higher accuracy in areas
with moderate slopes and mixed vegetation cover, while
performance was reduced in extremely steep terrain and
highly disturbed landscapes.

4. Discussion

4.1 Spatial Patterns and Driving Factors

The spatial distribution of soil erosion risk in the study
watershed reflects the complex interplay between climatic,
topographic, soil, vegetation, and anthropogenic factors. The
concentration of high erosion risk areas in steep terrain with
sparse vegetation cover aligns with established erosion theory
and previous studies in similar environments 1. The strong
correlation between slope gradient and erosion rates (r =
0.78) underscores the fundamental role of topography in
controlling erosion processes, consistent with findings from
Wischmeier and Smith ],

The inverse relationship between vegetation cover (NDVI)
and erosion rates (r = -0.82) highlights the critical importance
of plant cover in soil protection. This relationship is
particularly pronounced during the monsoon season when
vegetation cover is minimal and rainfall intensity is high [l
The seasonal variation in C-factor values (0.02-0.98)
emphasizes the temporal dynamics of erosion risk and the
need for continuous monitoring approaches 1.

4.2 Land Use Impacts on Erosion Risk

The analysis reveals significant differences in erosion
susceptibility across land use categories, with agricultural
lands showing the highest vulnerability. This pattern reflects
the combined effects of reduced vegetation cover, soil
disturbance through tillage operations, and inadequate
conservation practices . The elevated erosion rates in
degraded forests (15.2 t ha™! yr') compared to dense forests
(3.8 t ha! yr') demonstrate the consequences of forest
degradation on soil conservation capacity.

These findings have important implications for land
management strategies. The implementation of conservation
practices such as contour farming, terracing, and agroforestry
systems could significantly reduce erosion rates in
agricultural areas 1. Similarly, forest restoration efforts in
degraded areas could enhance soil protection while providing
additional ecosystem services [,

4.3 Remote Sensing Integration Benefits

The integration of remote sensing data with the RUSLE
model proved highly effective for large-scale erosion
assessment. The use of multi-temporal satellite imagery
enabled the capture of seasonal variations in vegetation cover
and land use changes, improving the accuracy of C-factor

estimation®. The Google Earth Engine platform facilitated
efficient processing of large datasets and enabled
reproducible analysis workflows 7,

However, certain limitations were observed in the remote
sensing approach. Cloud cover during the monsoon season
limited the availability of optical imagery, potentially
affecting the temporal representation of vegetation dynamics
', The coarse spatial resolution of some datasets (e.g.,
SRTM DEM) may have reduced the precision of topographic
factor calculations in areas with complex terrain "1,

4.4 Model Performance and Uncertainties

The RUSLE model demonstrated reasonable accuracy (R? =
0.73) for regional-scale erosion assessment, comparable to
similar studies in semi-arid environments [’ However, the
model's empirical nature and reliance on statistical
relationships introduce inherent uncertainties [l. The reduced
performance in extremely steep terrain and highly disturbed
landscapes suggests the need for model refinements or
alternative approaches in these environments ['1,

Uncertainty sources include parameter estimation errors,
spatial interpolation of meteorological data, and the
assumption of uniform erosion processes across diverse
environmental conditions [l. Future research should focus on
incorporating process-based models, improving parameter
calibration techniques, and developing uncertainty
quantification frameworks [,

4.5 Conservation Implications

The spatial maps of erosion risk provide valuable information
for prioritizing conservation interventions. High-risk areas
covering 34.2% of the watershed require immediate attention
through targeted soil conservation measures. The
identification of hotspots enables efficient allocation of
limited resources and maximizes conservation impact [],
Recommended conservation strategies include: (1)
implementation of mechanical measures (terraces, check
dams) in steep agricultural areas, (2) promotion of
agroforestry systems in vulnerable zones, (3) restoration of
degraded forests through native species plantation, and (4)
adoption of conservation agriculture practices in intensive
farming areas [,

5. Conclusion

This study successfully demonstrated the integration of

remote sensing technologies with the RUSLE model for

comprehensive soil erosion risk assessment across a semi-
arid watershed. The approach enabled the generation of

spatially explicit erosion maps with satisfactory accuracy (R?2

=0.73), providing valuable insights into erosion patterns and

controlling factors. Key findings include:

1. Spatial Heterogeneity: Soil erosion risk showed
significant spatial variation, with 34.2% of the watershed
classified as high to very high risk areas requiring
immediate conservation intervention.
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2.

Controlling Factors: Vegetation cover (r = -0.82) and
slope gradient (r = 0.78) emerged as the primary
controlling factors, emphasizing the importance of
maintaining plant cover and implementing slope-specific
conservation measures.

Land Use Impacts: Agricultural lands exhibited the
highest erosion susceptibility (18.7 t ha™ yr?),
highlighting the need for sustainable farming practices
and conservation agriculture adoption.

Temporal Dynamics: Seasonal variations in vegetation
cover and rainfall patterns created dynamic erosion risk
scenarios, underscoring the importance of continuous
monitoring approaches.

Conservation Priorities: The spatial maps identified
critical areas for conservation intervention, enabling
efficient resource allocation and targeted management
strategies.

The integrated remote sensing-RUSLE framework provides
a cost-effective and scalable approach for erosion assessment
across diverse environmental conditions. The methodology
can be readily adapted to other watersheds and regions,
supporting global efforts in soil conservation and sustainable

land management.

Future research should focus on

incorporating process-based models, improving uncertainty
quantification, and developing real-time monitoring systems
for adaptive management strategies.

The outcomes of this study contribute to the scientific
understanding of erosion processes and provide practical
tools for land managers, policymakers, and conservation
practitioners. The spatial information generated can support
evidence-based decision-making for sustainable watershed
management and contribute to achieving global targets for
land degradation neutrality and ecosystem restoration.
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