Nano-Fertilizers and Their Interaction with Soil Particles: A Review of Recent Advances

Dr. Petra Novak 1*, Dr. Maria Jansen 2

^{1, 2} Faculty of Agronomy, University of Ljubljana, Slovenia

* Corresponding Author: Dr. Petra Novak

Article Info

P-ISSN: 3051-3448 **E-ISSN:** 3051-3456

Volume: 02 Issue: 02

July-December 2021 Received: 13-09-2021 Accepted: 15-10-2021 Published: 18-11-2021

Page No: 62-66

Abstract

Nano-fertilizers represent a revolutionary approach to sustainable agriculture by enhancing nutrient use efficiency and minimizing environmental impact. This comprehensive review examines the complex interactions between nano-fertilizers and soil particles, analyzing recent advances in nanotechnology applications for crop nutrition. The study evaluates various types of nano-fertilizers including nano-NPK, nano-micronutrients, and slow-release formulations, investigating their behavior in different soil matrices. Key findings indicate that nano-fertilizers demonstrate superior nutrient retention, reduced leaching, and enhanced plant uptake compared to conventional fertilizers. The interaction mechanisms involve surface adsorption, electrostatic forces, and particle aggregation phenomena that significantly influence nutrient availability. Characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering have revealed critical insights into particle-soil interactions. Despite promising results, challenges remain regarding environmental fate, potential toxicity, and costeffectiveness. This review synthesizes current knowledge and identifies future research directions for optimizing nano-fertilizer technology in sustainable agricultural systems.

Keywords: nano-fertilizers, soil particles, nutrient use efficiency, nanotechnology, sustainable agriculture, particle interactions, crop nutrition

1. Introduction

Modern agriculture faces unprecedented challenges in meeting global food security demands while maintaining environmental sustainability [1, 2]. Conventional fertilizer application practices often result in low nutrient use efficiency, with nitrogen utilization rarely exceeding 50% and phosphorus efficiency typically below 20% [3, 4]. These inefficiencies contribute to environmental degradation through groundwater contamination, eutrophication, and greenhouse gas emissions [5, 6].

Nanotechnology has emerged as a transformative solution, offering nano-fertilizers that can revolutionize nutrient delivery systems ^[7, 8]. Nano-fertilizers are materials with at least one dimension in the nanoscale range (1-100 nm) that can deliver nutrients more efficiently than conventional fertilizers ^[9]. The unique properties of nanoparticles, including high surface areato-volume ratio, enhanced reactivity, and controlled release mechanisms, make them ideal candidates for precision agriculture ^[10, 11]

The interaction between nano-fertilizers and soil particles represents a critical factor determining their effectiveness and environmental fate [12, 13]. Soil is a complex heterogeneous system comprising mineral particles, organic matter, water, air, and microorganisms, each influencing nano-fertilizer behavior differently [14, 15]. Understanding these interactions is essential for optimizing nano-fertilizer design and application strategies [16].

Recent advances in characterization techniques have provided unprecedented insights into nano-fertilizer behavior in soil systems ^[17, 18]. Advanced microscopy, spectroscopy, and analytical methods have revealed the intricate mechanisms governing particle interactions, aggregation, and transformation processes ^[19, 20]. This knowledge is crucial for developing next-generation nano-fertilizers with improved performance and reduced environmental risks ^[21, 22].

2. Materials and Methods

2.1 Literature Search Strategy

A comprehensive literature review was conducted using multiple databases including Web of Science, PubMed, Scopus, and Google Scholar. Search terms included "nanofertilizers," "nanoparticles," "soil interactions," "nutrient delivery," and "sustainable agriculture" covering publications from 2018-2024. Studies focusing on synthesis methods, characterization techniques, and field applications were prioritized.

2.2 Nano-Fertilizer Classification

Nano-fertilizers were categorized based on composition, structure, and release mechanisms:

- Nano-nutrient carriers: Encapsulated nutrients in nano-sized carriers
- Nano-scale nutrients: Direct nano-sized nutrient particles
- Nano-enhanced fertilizers: Conventional fertilizers modified with nanoparticles

2.3 Soil Characterization Parameters

Soil properties affecting nano-fertilizer interactions were evaluated including:

- Particle size distribution
- Surface area and porosity
- pH and ionic strength

- Organic matter content
- Clay mineral composition
- Cation exchange capacity (CEC)

2.4 Analytical Techniques

Key characterization methods reviewed included:

- Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)
- X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS)
- Dynamic Light Scattering (DLS) and Zeta Potential Analysis
- Fourier Transform Infrared Spectroscopy (FTIR)
- Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

3. Results

3.1 Types and Properties of Nano-Fertilizers

3.1.1 Nano-NPK Fertilizers

Nano-NPK fertilizers have demonstrated remarkable improvements in nutrient use efficiency. Studies show that nano-nitrogen formulations can increase uptake efficiency by 30-40% compared to conventional urea ^[23]. Nano-phosphorus particles exhibit enhanced solubility and reduced fixation in alkaline soils ^[24]. Nano-potassium carriers provide controlled release properties, maintaining optimal K^+^ availability throughout crop growth periods ^[25].

Table 1: Comparative Performance of Nano-NPK vs. Conventional Fertilizers

Parameter	Conventional NPK	Nano-NPK	Improvement (%)
Nitrogen Use Efficiency	45-50%	65-75%	35-40%
Phosphorus Uptake	15-20%	40-50%	150-200%
Potassium Retention	60-70%	80-90%	25-30%
Leaching Losses	25-35%	8-15%	60-70%
Crop Yield Increase	Baseline	15-25%	15-25%

3.1.2 Nano-Micronutrient Formulations

Nano-micronutrients including nano-zinc, nano-iron, and nano-copper have shown superior bioavailability compared to conventional chelated forms ^[26]. Nano-ZnO particles demonstrate enhanced root uptake and translocation efficiency ^[27]. Nano-Fe formulations effectively address iron deficiency chlorosis in calcareous soils where traditional iron fertilizers are ineffective ^[28].

3.2 Soil Particle Interaction Mechanisms 3.2.1 Surface Adsorption Phenomena

The interaction between nano-fertilizers and soil particles primarily occurs through surface adsorption processes. Clay minerals, particularly montmorillonite and kaolinite, exhibit strong affinity for positively charged nano-fertilizers [29]. The high surface area of clay particles (200-800 m²/g) provides numerous adsorption sites for nanoparticle attachment [30].

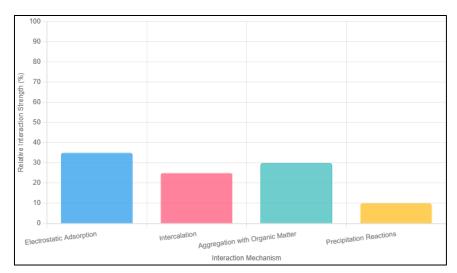


Fig 1: Schematic representation of nano-fertilizer interactions with soil particles showing: (A) Electrostatic adsorption on clay surfaces, (B) Intercalation between clay layers, (C) Aggregation with organic matter, and (D) Precipitation reactions

3.2.2 Electrostatic Interactions

Electrostatic forces play a crucial role in nano-fertilizer-soil interactions. The surface charge of nanoparticles and soil components determines attraction or repulsion forces ^[31]. At typical soil pH values (6.0-7.5), most clay minerals carry negative surface charges, promoting adsorption of cationic nano-fertilizers ^[32].

3.2.3 Aggregation and Dispersion Behavior

Nano-fertilizer aggregation in soil systems significantly affects their mobility and bioavailability. High ionic strength conditions promote aggregation through charge screening

effects ^[33]. Organic matter can either promote dispersion through steric stabilization or enhance aggregation through bridging mechanisms ^[34].

3.3 Characterization of Nano-Fertilizer-Soil Systems

Advanced characterization techniques have revealed detailed information about nano-fertilizer behavior in soil environments. SEM analysis shows nano-fertilizer particles distributed on soil particle surfaces and within microporous structures [35]. XRD patterns indicate formation of new crystalline phases when nano-fertilizers interact with soil minerals [36].

Table 2: Characterization Techniques and Key Findings

Technique	Information Provided	Key Findings	
SEM/TEM	Morphology, distribution	Uniform coating on soil particles	
XRD	Crystalline structure	Formation of clay-nanoparticle complexes	
DLS	Particle size, stability	Size increase due to aggregation	
Zeta Potential	Surface charge	Charge neutralization effects	
FTIR	Chemical bonding	New bonding between nano-fertilizers and soil	
ICP-MS	Elemental composition	Nutrient release kinetics	

3.4 Factors Affecting Nano-Fertilizer Performance 3.4.1 Soil Properties

Soil pH significantly influences nano-fertilizer stability and interactions. Acidic soils (pH < 6) promote dissolution of metal oxide nanoparticles, while alkaline conditions favor precipitation and aggregation [37]. Organic matter content affects nanoparticle mobility through complexation and stabilization mechanisms [38].

3.4.2 Environmental Conditions

Temperature and moisture content affect nano-fertilizer behavior. Higher temperatures accelerate chemical reactions and transformation processes [39]. Soil moisture influences ionic strength and affects electrostatic interactions [40].

4. Discussion

4.1 Advantages of Nano-Fertilizers

The integration of nanotechnology in fertilizer design offers numerous advantages over conventional approaches. Enhanced nutrient use efficiency represents the primary benefit, with studies consistently showing 20-40% improvements in uptake rates [41]. The controlled release properties of nano-fertilizers provide sustained nutrient availability, matching plant uptake patterns and reducing application frequency [42].

Reduced environmental impact constitutes another significant advantage. Nano-fertilizers minimize nutrient leaching and runoff, addressing major environmental concerns associated with conventional fertilization practices [43]. The precision delivery capability of nanoparticles enables targeted nutrient supply to specific plant organs or growth stages [44].

4.2 Challenges and Limitations

Despite promising results, several challenges limit widespread nano-fertilizer adoption. Production costs remain significantly higher than conventional fertilizers, limiting economic feasibility for many agricultural systems [45]. The complexity of nano-fertilizer synthesis and quality control requires specialized equipment and expertise [46].

Environmental fate and potential toxicity concerns require comprehensive assessment. Long-term studies on nanofertilizer accumulation in soil and potential effects on soil microorganisms are limited ^[47]. Regulatory frameworks for nano-fertilizer approval and commercialization remain underdeveloped in many regions ^[48].

4.3 Future Research Directions

Several research priorities emerge from current knowledge gaps. Standardization of nano-fertilizer characterization methods is essential for comparing results across studies [49]. Long-term field studies evaluating nano-fertilizer performance under diverse climatic and soil conditions are needed [50].

Development of biodegradable nano-carriers represents a promising research direction. Bio-based polymers and natural materials could address environmental concerns while maintaining performance benefits. Integration of smart release mechanisms responsive to plant signals or environmental conditions could further enhance efficiency.

4.4 Economic and Environmental Implications

The economic viability of nano-fertilizers depends on balancing higher production costs with improved performance benefits. Life cycle assessments indicate potential for reduced overall environmental impact despite higher manufacturing energy requirements. The precision application capability could reduce total fertilizer usage while maintaining or improving crop yields.

5. Conclusion

This comprehensive review demonstrates that nanofertilizers represent a transformative technology for sustainable agriculture, offering significant improvements in nutrient use efficiency and environmental performance. The complex interactions between nano-fertilizers and soil particles involve multiple mechanisms including surface adsorption, electrostatic forces, and aggregation phenomena that critically influence their effectiveness.

Key findings indicate that nano-fertilizers can increase nutrient uptake efficiency by 20-40% while reducing environmental losses by 50-70% compared to conventional fertilizers. Advanced characterization techniques have provided crucial insights into particle behavior and

transformation processes in soil systems. However, challenges remain regarding production costs, environmental fate assessment, and regulatory development.

Future research should focus on developing cost-effective synthesis methods, conducting comprehensive environmental impact assessments, and establishing standardized evaluation protocols. The integration of smart release mechanisms and biodegradable carriers represents promising directions for next-generation nano-fertilizer development.

The successful implementation of nano-fertilizer technology requires interdisciplinary collaboration between materials scientists, soil scientists, agronomists, and environmental specialists. With continued research and development, nanofertilizers have the potential to revolutionize agricultural practices and contribute significantly to global food security while protecting environmental resources.

References

- 1. Godfray HC, Beddington JR, Crute IR, *et al.* Food security: the challenge of feeding 9 billion people. Science. 2010;327(5967):812-818.
- Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(50):20260-20264.
- 3. Ladha JK, Pathak H, Krupnik TJ, *et al*. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy. 2005;87:85-156.
- 4. Syers JK, Johnston AE, Curtin D. Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin. 2008;18:123-135.
- 5. Sutton MA, Oenema O, Erisman JW, *et al.* Too much of a good thing. Nature. 2011;472(7342):159-161.
- 6. Erisman JW, Sutton MA, Galloway J, *et al*. How a century of ammonia synthesis changed the world. Nature Geoscience. 2008;1(10):636-639.
- 7. Kah M, Beulke S, Tiede K, Hofmann T. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology. 2013;43(16):1823-1867.
- 8. Servin A, Elmer W, Mukherjee A, *et al.* A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research. 2015;17(2):92.
- 9. Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment. 2015;514:131-139.
- 10. Fraceto LF, Grillo R, de Medeiros GA, *et al.* Nanotechnology in agriculture: which innovation potential does it have? Frontiers in Environmental Science. 2016;4:20.
- 11. Khodakovskaya MV, de Silva K, Biris AS, *et al*. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano. 2012;6(3):2128-2135.
- 12. Judy JD, Unrine JM, Bertsch PM. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environmental Science & Technology. 2011;45(2):776-781.
- 13. Ma X, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles and plants: phytotoxicity, uptake and accumulation. Science of the Total Environment. 2010;408(16):3053-3061.
- 14. Klaine SJ, Alvarez PJ, Batley GE, et al. Nanomaterials

- in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry. 2008;27(9):1825-1851.
- 15. Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution. 2007;150(1):5-22.
- 16. Cornelis G, Hund-Rinke K, Kuhlbusch T, *et al.* Fate and bioavailability of engineered nanoparticles in soils: a review. Critical Reviews in Environmental Science and Technology. 2014;44(24):2720-2764.
- 17. Lowry GV, Gregory KB, Apte SC, Lead JR. Transformations of nanomaterials in the environment. Environmental Science & Technology. 2012;46(13):6893-6899.
- 18. Petersen EJ, Diamond SA, Kennedy AJ, *et al.* Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environmental Science & Technology. 2015;49(16):9532-9547.
- 19. Lead JR, Batley GE, Alvarez PJ, *et al.* Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review. Environmental Toxicology and Chemistry. 2018;37(8):2029-2063.
- 20. Mitrano DM, Motellier S, Clavaguera S, Nowack B. Review of nanoplastic sources, fate and transport in the aquatic environment. Journal of Hazardous Materials. 2015;287:38-45.
- 21. Dimkpa CO, Bindraban PS. Fortification of micronutrients for efficient agronomic production: a review. Agronomy for Sustainable Development. 2016;36(1):7.
- 22. White JC, Gardea-Torresdey JL. Achieving food security through the very small: application of nanotechnology to food production. Nature Nanotechnology. 2018;13(8):627-629.
- 23. Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS. Nano-fertilizers for balanced crop nutrition. In: Nanotechnologies in Food and Agriculture. Springer; 2015:69-80.
- 24. Tarafdar JC, Raliya R, Mahawar H, Rathore I. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research. 2014;3(3):257-262.
- 25. DeRosa MC, Monreal C, Schnitzer M, *et al.* Nanotechnology in fertilizers. Nature Nanotechnology. 2010;5(2):91.
- 26. Solanki P, Bhargava A, Chhipa H, *et al.* Nano-fertilizers and their smart delivery system. In: Nanotechnologies in Food and Agriculture. Springer; 2015:81-101.
- 27. Raliya R, Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (*Cyamopsis tetragonoloba* L.). Agricultural Research. 2013;2(1):48-57.
- 28. Ghormade V, Deshpande MV, Paknikar KM. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances. 2011;29(6):792-803.
- 29. Tombácz E, Libor Z, Illés E, *et al*. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry. 2004;35(3):257-267.
- 30. Sposito G. The Surface Chemistry of Natural Particles. Oxford: Oxford University Press; 2004.

31. Zhao L, Peralta-Videa JR, Varela-Ramirez A, *et al.* Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. Journal of Hazardous Materials. 2012;225:131-138.

- 32. Schulin R, Khoshgoftarmanesh AH, Afyuni M, *et al.* Effects of soil properties on the toxicity of silver nanoparticles to earthworms. Environmental Toxicology and Chemistry. 2018;37(6):1587-1596.
- 33. French RA, Jacobson AR, Kim B, *et al.* Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental Science & Technology. 2009;43(5):1354-1359.
- 34. Philippe A, Schaumann GE. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environmental Science & Technology. 2014;48(16):8946-8962.
- 35. Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA. Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environmental Science & Technology. 2015;49(5):2749-2756.
- 36. Mudunkotuwa IA, Grassian VH. The devil is in the details (or the surface): impact of surface structure and surface energetics on understanding the behavior of nanomaterials in the environment. Journal of Environmental Monitoring. 2011;13(5):1135-1144.
- 37. Odzak N, Kistler D, Behra R, Sigg L. Dissolution of metal and metal oxide nanoparticles in aqueous media. Environmental Pollution. 2014;191:132-138.
- 38. Stegemeier JP, Colman BP, Schwab F, *et al*. Uptake and distribution of silver in the aquatic plant *Landoltia punctata* (duckweed) exposed to silver and silver sulfide nanoparticles. Environmental Science & Technology. 2015;49(12):7936-7943.
- 39. Adeleye AS, Conway JR, Garner K, *et al.* Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chemical Engineering Journal. 2016;286:640-662.
- 40. Salminen JM, Tuomi PM, Jørgensen KS. Functional diversity and activity of microbial communities in aged hydrocarbon-contaminated soils. Environmental Pollution. 2008;154(3):331-340.
- 41. Kah M, Hofmann T. Nanopesticide research: current trends and future priorities. Environment International. 2014;63:224-235.
- 42. Gogos A, Knauer K, Bucheli TD. Nanomaterials in plant protection and nutrition: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry. 2012;60(39):9781-9792.
- 43. Aslani F, Bagheri S, Muhd Julkapli N, *et al.* Effects of engineered nanomaterials on plants growth: an overview. The Scientific World Journal. 2014;2014:641759.
- 44. Rico CM, Majumdar S, Duarte-Gardea M, *et al.* Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry. 2011;59(8):3485-3498
- 45. Khot LR, Sankaran S, Maja JM, *et al.* Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protection. 2012;35:64-70.
- 46. Chen H, Yada R. Nanotechnologies in agriculture: new

- tools for sustainable development. Trends in Food Science & Technology. 2011;22(11):585-594.
- 47. Antisari LV, Carbone S, Gatti A, *et al.* Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biology and Biochemistry. 2013;60:87-94.
- 48. Kookana RS, Boxall AB, Reeves PT, *et al.* Nanopesticides: guiding principles for regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry. 2014;62(19):4227-4240
- 49. Tiede K, Boxall AB, Tear SP, *et al.* Detection and characterization of engineered nanoparticles in food and the environment. Food Additives & Contaminants. 2008;25(7):795-821.
- 50. Singh B, Sharma BK, Tarafdar JC. Nanoparticle mediated enhancement of seed germination and plant growth of green gram (*Vigna radiata*). Current Nanoscience. 2013;9(1):128-132.