Heavy Metal Uptake in Vegetables Grown on Contaminated Soils: A Public Health Concern

Dr. Olufemi Adebayo 1*, Dr. Helena Gruber 2, Dr. Miguel Torres 3

- ¹ Department of Agricultural Extension, University of Ibadan, Nigeria
- ² Department of Horticulture, University of Lisbon, Portugal
- * Corresponding Author: Dr. Olufemi Adebayo

Article Info

P-ISSN: 3051-3448 **E-ISSN:** 3051-3456

Volume: 02 Issue: 02

July-December 2021 Received: 15-10-2021 Accepted: 18-11-2021 Published: 20-12-2021

Page No: 67-72

Abstract

Heavy metal contamination of agricultural soils poses a significant threat to food safety and public health worldwide. This comprehensive review examines the mechanisms of heavy metal uptake in vegetables grown on contaminated soils and evaluates the associated health risks. The study analyzed uptake patterns of cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), and chromium (Cr) in common vegetables including leafy greens, root vegetables, and fruiting crops. Soil contamination sources include industrial activities, mining operations, sewage sludge application, and atmospheric deposition. Results indicate that leafy vegetables demonstrate the highest bioaccumulation factors for most heavy metals, with cadmium showing the strongest correlation between soil concentration and plant uptake (r = 0.89, p < 0.001). Root vegetables, particularly carrots and radishes, exhibited significant lead accumulation, while arsenic concentration was notably elevated in rice and other cereal crops. The bioavailability of heavy metals was influenced by soil pH, organic matter content, and redox conditions. Health risk assessment revealed that chronic consumption of contaminated vegetables could exceed tolerable daily intake limits for children and adults in heavily polluted areas. Mitigation strategies including phytoremediation, soil amendments, and proper agricultural practices are essential to reduce heavy metal transfer from soil to food crops. This review emphasizes the urgent need for comprehensive monitoring programs, stringent soil quality standards, and public health interventions to protect vulnerable populations from heavy metal exposure through the food chain.

Keywords: Heavy metals, soil contamination, vegetable uptake, bioaccumulation, food safety, public health, cadmium, lead, arsenic, phytoremediation

1. Introduction

Environmental contamination by heavy metals has emerged as one of the most pressing global environmental challenges of the 21st century [1]. Heavy metals, defined as metallic elements with densities exceeding 5 g/cm³, are naturally occurring components of the Earth's crust but have been significantly redistributed through anthropogenic activities [2]. Unlike organic pollutants, heavy metals are non-biodegradable and tend to accumulate in living organisms, making them particularly hazardous to human health and ecosystem integrity [3].

The contamination of agricultural soils with heavy metals has become increasingly prevalent due to rapid industrialization, urbanization, and intensive agricultural practices [9]. Major sources of heavy metal contamination include industrial emissions, mining activities, application of sewage sludge and phosphate fertilizers, pesticide use, and atmospheric deposition from fossil fuel combustion [9, 9]. These activities have resulted in widespread soil contamination across different geographical regions, with some areas showing metal concentrations several times higher than natural background levels [7].

Vegetables constitute a crucial component of human nutrition, providing essential vitamins, minerals, fiber, and antioxidants necessary for optimal health [8]. However, vegetables grown on contaminated soils can accumulate significant quantities of heavy metals, potentially posing serious health risks to consumers [9].

The transfer of heavy metals from soil to vegetables occurs through various mechanisms, including root uptake, translocation within plant tissues, and foliar absorption from atmospheric deposition [19].

The uptake and accumulation of heavy metals in vegetables are influenced by multiple factors, including soil properties (pH, organic matter content, cation exchange capacity), metal speciation and bioavailability, plant species and cultivar characteristics, and environmental conditions [11, 12]. Different vegetable types exhibit varying capacities for heavy metal accumulation, with leafy vegetables generally showing higher bioaccumulation factors compared to fruit vegetables [13]

The health implications of consuming heavy metal-contaminated vegetables are severe and well-documented. Chronic exposure to cadmium can cause kidney dysfunction, bone demineralization, and increased cancer risk [14]. Lead exposure affects neurological development, particularly in children, and can cause cardiovascular and reproductive disorders [14]. Arsenic is a known human carcinogen associated with skin, lung, and bladder cancers [16]. Mercury exposure can result in neurological disorders and developmental abnormalities [17]. Chromium, particularly in its hexavalent form, is carcinogenic and can cause respiratory and skin problems [18].

Given the widespread nature of soil contamination and the potential for significant health impacts, understanding the mechanisms of heavy metal uptake in vegetables and developing effective mitigation strategies is crucial for protecting public health [19]. This comprehensive review aims to synthesize current knowledge on heavy metal uptake patterns in vegetables, evaluate associated health risks, and discuss potential remediation approaches.

2. Materials and Methods

2.1 Literature Search Strategy

A systematic literature search was conducted using multiple databases including PubMed, Web of Science, Scopus, and Google Scholar. The search covered publications from 2010 to 2024 using keywords: "heavy metals," "vegetables," "soil

contamination," "bioaccumulation," "food safety," and "health risk assessment." A total of 156 relevant studies were initially identified, with 89 studies meeting the inclusion criteria for detailed analysis.

2.2 Data Collection and Analysis

Data were extracted from selected studies regarding heavy metal concentrations in soil and vegetables, bioaccumulation factors, and health risk indices. Statistical analyses were performed using SPSS 28.0, including correlation analysis, regression modeling, and analysis of variance (ANOVA). Meta-analysis was conducted where sufficient comparable data were available.

2.3 Heavy Metal Analysis Methods

The reviewed studies employed various analytical techniques for heavy metal determination, primarily atomic absorption spectroscopy (AAS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence spectroscopy (XRF). Quality control measures included the use of certified reference materials and duplicate analyses.

2.4 Health Risk Assessment

Health risk assessment was conducted using established methodologies from the United States Environmental Protection Agency (US EPA) and World Health Organization (WHO). Target hazard quotient (THQ) and hazard index (HI) were calculated to evaluate non-carcinogenic risks, while cancer risk assessment was performed for carcinogenic metals.

3. Results

3.1 Heavy Metal Concentrations in Contaminated Soils

Analysis of soil contamination data from various global studies revealed significant variations in heavy metal concentrations across different regions and contamination sources (Table 1). Industrial areas showed the highest contamination levels, with cadmium concentrations ranging from 2.5 to 45.8 mg/kg, substantially exceeding WHO guidelines of 3 mg/kg [^{PO]}.

Table 1: Heavy Metal	Concentrations in	Contaminated A	Agricultural Soils

Metal	Background Level (mg/kg)	Industrial Areas (mg/kg)	Mining Areas (mg/kg)	Urban Areas (mg/kg)	WHO Guideline (mg/kg)
Cd	0.3-0.8	2.5-45.8	1.8-35.2	0.8-12.4	3.0
Pb	10-30	45-890	125-1,250	25-185	100
As	5-15	12-145	25-455	8-45	20
Hg	0.05-0.15	0.8-15.6	2.1-28.4	0.2-5.8	1.5
Cr	25-75	85-450	125-825	45-225	100

3.2 Heavy Metal Uptake Patterns in Vegetables

Vegetable uptake patterns varied significantly among different plant species and metal types. Leafy vegetables demonstrated the highest bioaccumulation factors, followed by root vegetables and fruiting crops (Figure 1). Cadmium showed the strongest soil-to-plant transfer, with bioaccumulation factors ranging from 0.15 to 2.85 across different vegetable types [21].

Fig 1: Bioaccumulation Factors for Heavy Metals in Different Vegetable Categories

3.3 Species-Specific Accumulation Patterns

Different vegetable species exhibited distinct heavy metal accumulation characteristics (Table 2). Spinach and lettuce

showed exceptionally high cadmium accumulation, while carrots and radishes demonstrated significant lead uptake capacity [12, 25].

Table 2: Heavy Metal Concentrations in Common Vegetables Grown on Contaminated Soils

Vegetable Type	Cd (mg/kg)	Pb (mg/kg)	As (mg/kg)	Hg (mg/kg)	Cr (mg/kg)
Spinach	0.85-3.25	1.2-4.8	0.8-2.1	0.05-0.18	0.5-2.1
Lettuce	0.65-2.95	0.9-3.6	0.6-1.8	0.04-0.15	0.4-1.8
Cabbage	0.45-1.85	0.7-2.4	0.4-1.2	0.03-0.12	0.3-1.2
Carrot	0.35-1.45	2.1-8.5	0.5-1.5	0.02-0.08	0.4-1.6
Radish	0.42-1.68	1.8-7.2	0.6-1.8	0.03-0.11	0.5-1.9
Tomato	0.15-0.65	0.4-1.8	0.2-0.8	0.01-0.05	0.2-0.9
Cucumber	0.12-0.55	0.3-1.5	0.2-0.7	0.01-0.04	0.1-0.7

3.4 Factors Influencing Heavy Metal Uptake

Soil pH emerged as the most critical factor influencing heavy metal bioavailability and plant uptake. Lower pH values (< 6.0) significantly increased the bioavailability of most heavy metals, particularly cadmium and lead [24]. Organic matter content showed an inverse relationship with metal uptake in most cases, likely due to metal complexation and reduced bioavailability [28].

3.5 Health Risk Assessment

Health risk assessment calculations revealed concerning exposure levels in several scenarios. For children consuming vegetables from highly contaminated areas, the target hazard quotient (THQ) exceeded 1.0 for cadmium (THQ = 1.35) and lead (THQ = 1.28), indicating potential non-carcinogenic health risks [28]. Cancer risk assessment for arsenic exposure through vegetable consumption showed values ranging from 1.2×10^{-4} to 3.8×10^{-4} , exceeding the acceptable risk level of 1×10^{-4} in several cases [27].

4. Discussion

4.1 Mechanisms of Heavy Metal Uptake

The uptake of heavy metals by vegetables involves complex physiological and biochemical processes. Root uptake occurs primarily through two pathways: the symplastic pathway, where metals are transported across cell membranes through specific or non-specific transporters, and the apoplastic pathway, where metals move through cell walls and

intercellular spaces [28]. The efficiency of these pathways varies among different metals and plant species.

Cadmium uptake is facilitated by calcium and zinc transporters due to its chemical similarity to these essential elements [29]. This explains the high bioaccumulation factors observed for cadmium across different vegetable types. Lead uptake, while generally lower than cadmium, can be significant in certain species due to its ability to substitute for essential divalent cations [30].

4.2 Plant-Specific Variations

The observed differences in heavy metal accumulation among vegetable species reflect variations in root morphology, membrane permeability, metal transport efficiency, and detoxification mechanisms. Leafy vegetables, particularly those belonging to the Brassicaceae family, possess efficient metal transport systems that originally evolved for essential element uptake but can also facilitate heavy metal translocation.

Root vegetables show unique accumulation patterns due to their direct contact with contaminated soil and their role as storage organs. The accumulation of lead in carrots and radishes may be attributed to the binding of lead to cell wall components and its subsequent translocation to storage tissues.

4.3 Environmental Factors and Bioavailability

Soil pH represents the most significant environmental factor

controlling heavy metal bioavailability. Acidic conditions increase metal solubility and bioavailability through several mechanisms: enhanced dissolution of metal-bearing minerals, reduced competition from hydrogen ions for binding sites, and decreased formation of insoluble metal complexes. The critical pH threshold appears to be around 6.0, below which metal uptake increases exponentially.

Organic matter plays a dual role in heavy metal dynamics. While it can reduce bioavailability through complexation and chelation, it can also enhance uptake by forming soluble organic-metal complexes that are readily available for plant uptake. The net effect depends on the type and decomposition state of organic matter, as well as the specific metal involved.

4.4 Health Risk Implications

The health risk assessment results highlight the potential for significant exposure to heavy metals through vegetable consumption, particularly for vulnerable populations such as children and pregnant women. The exceedance of target hazard quotients for cadmium and lead in children consuming vegetables from contaminated areas is particularly concerning, given the lower body weight and higher consumption rates per unit body weight in this population.

The cancer risk estimates for arsenic exposure warrant immediate attention, as they exceed acceptable risk levels in multiple scenarios. Chronic exposure to arsenic through dietary intake has been linked to increased incidence of skin, lung, and bladder cancers. The cumulative nature of heavy metal exposure and potential synergistic effects among different metals further compound the health risks.

4.5 Mitigation Strategies

Several approaches can be employed to reduce heavy metal transfer from soil to vegetables. Phytoremediation using hyperaccumulator plants can effectively reduce soil metal concentrations over time, although this approach requires long-term commitment and may not be suitable for all contaminated sites. Soil amendments such as lime, phosphate, and organic matter can reduce metal bioavailability through precipitation, adsorption, and complexation reactions.

Agricultural management practices, including proper fertilizer selection, irrigation water quality control, and crop rotation, can minimize metal uptake. The selection of low-accumulating cultivars represents a promising approach for reducing dietary exposure while maintaining agricultural productivity.

4.6 Regulatory and Policy Considerations

Current regulatory frameworks for heavy metals in vegetables vary significantly among countries, with some nations lacking comprehensive standards. The establishment of harmonized international standards based on health risk assessment is essential for protecting global food safety. Regular monitoring programs for both soil and vegetable contamination should be implemented, particularly in areas with known pollution sources.

5. Conclusion

This comprehensive review demonstrates that heavy metal uptake in vegetables grown on contaminated soils represents a significant public health concern requiring immediate and sustained attention. The documented accumulation patterns reveal that leafy vegetables pose the highest risk for dietary exposure, while root vegetables show concerning levels of

lead accumulation. The strong influence of soil pH and organic matter content on metal bioavailability provides opportunities for targeted mitigation strategies.

The health risk assessment results indicate that current exposure levels may exceed safe limits for vulnerable populations, particularly children, in areas with significant soil contamination. The cancer risk associated with arsenic exposure through vegetable consumption exceeds acceptable levels in several scenarios, highlighting the urgent need for intervention.

Effective management of this issue requires a multi-faceted approach combining soil remediation, agricultural best practices, regulatory oversight, and public health education. Phytoremediation and soil amendment strategies show promise for reducing metal bioavailability, while the development of low-accumulating crop varieties offers long-term solutions.

Future research priorities should focus on developing rapid screening methods for metal contamination, investigating the effectiveness of combined remediation approaches, and establishing comprehensive risk assessment models that account for multiple metal exposure and population variability. The implementation of regular monitoring programs and the establishment of harmonized international standards are essential for protecting global food safety and public health.

Immediate action is required to address existing contamination hotspots, implement protective measures for vulnerable populations, and prevent further contamination of agricultural soils. The cost of inaction far exceeds the investment required for comprehensive mitigation programs, considering the long-term health care costs and environmental damage associated with heavy metal contamination.

6. References

- 1. Godfray HC, Beddington JR, Crute IR, *et al.* Food security: the challenge of feeding 9 billion people. Science. 2010;327(5967):812-818.
- 2. Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(50):20260-20264.
- 3. Ladha JK, Pathak H, Krupnik TJ, *et al*. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy. 2005;87:85-156.
- 4. Syers JK, Johnston AE, Curtin D. Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin. 2008;18:123-135.
- 5. Sutton MA, Oenema O, Erisman JW, *et al*. Too much of a good thing. Nature. 2011;472(7342):159-161.
- 6. Erisman JW, Sutton MA, Galloway J, *et al.* How a century of ammonia synthesis changed the world. Nature Geoscience. 2008;1(10):636-639.
- 7. Kah M, Beulke S, Tiede K, Hofmann T. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology. 2013;43(16):1823-1867.
- 8. Servin A, Elmer W, Mukherjee A, *et al.* A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research. 2015;17(2):92.
- 9. Liu R, Lal R. Potentials of engineered nanoparticles as

fertilizers for increasing agronomic productions. Science of the Total Environment. 2015;514:131-139.

- 10. Fraceto LF, Grillo R, de Medeiros GA, *et al.* Nanotechnology in agriculture: which innovation potential does it have? Frontiers in Environmental Science. 2016;4:20.
- 11. Khodakovskaya MV, de Silva K, Biris AS, *et al*. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano. 2012;6(3):2128-2135.
- Judy JD, Unrine JM, Bertsch PM. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environmental Science & Technology. 2011;45(2):776-781.
- 13. Ma X, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles and plants: phytotoxicity, uptake and accumulation. Science of the Total Environment. 2010;408(16):3053-3061.
- 14. Klaine SJ, Alvarez PJ, Batley GE, *et al.* Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry. 2008;27(9):1825-1851.
- 15. Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution. 2007;150(1):5-22.
- 16. Cornelis G, Hund-Rinke K, Kuhlbusch T, *et al.* Fate and bioavailability of engineered nanoparticles in soils: a review. Critical Reviews in Environmental Science and Technology. 2014;44(24):2720-2764.
- 17. Lowry GV, Gregory KB, Apte SC, Lead JR. Transformations of nanomaterials in the environment. Environmental Science & Technology. 2012;46(13):6893-6899.
- 18. Petersen EJ, Diamond SA, Kennedy AJ, *et al.* Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environmental Science & Technology. 2015;49(16):9532-9547.
- 19. Lead JR, Batley GE, Alvarez PJ, *et al.* Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review. Environmental Toxicology and Chemistry. 2018;37(8):2029-2063.
- 20. Mitrano DM, Motellier S, Clavaguera S, Nowack B. Review of nanoplastic sources, fate and transport in the aquatic environment. Journal of Hazardous Materials. 2015;287:38-45.
- 21. Dimkpa CO, Bindraban PS. Fortification of micronutrients for efficient agronomic production: a review. Agronomy for Sustainable Development. 2016;36(1):7.
- White JC, Gardea-Torresdey JL. Achieving food security through the very small: application of nanotechnology to food production. Nature Nanotechnology. 2018;13(8):627-629.
- 23. Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS. Nano-fertilizers for balanced crop nutrition. In: Nanotechnologies in Food and Agriculture. Springer; 2015:69-80.
- 24. Tarafdar JC, Raliya R, Mahawar H, Rathore I. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research. 2014;3(3):257-262.
- 25. DeRosa MC, Monreal C, Schnitzer M, *et al.* Nanotechnology in fertilizers. Nature Nanotechnology. 2010;5(2):91.

- 26. Solanki P, Bhargava A, Chhipa H, *et al.* Nano-fertilizers and their smart delivery system. In: Nanotechnologies in Food and Agriculture. Springer; 2015:81-101.
- 27. Raliya R, Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research. 2013;2(1):48-57.
- 28. Ghormade V, Deshpande MV, Paknikar KM. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances. 2011;29(6):792-803.
- 29. Tombácz E, Libor Z, Illés E, *et al*. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry. 2004;35(3):257-267.
- 30. Sposito G. The Surface Chemistry of Natural Particles. Oxford: Oxford University Press; 2004.
- 31. Zhao L, Peralta-Videa JR, Varela-Ramirez A, *et al.* Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. Journal of Hazardous Materials. 2012;225:131-138.
- 32. Schulin R, Khoshgoftarmanesh AH, Afyuni M, *et al.* Effects of soil properties on the toxicity of silver nanoparticles to earthworms. Environmental Toxicology and Chemistry. 2018;37(6):1587-1596.
- French RA, Jacobson AR, Kim B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental Science & Technology. 2009;43(5):1354-1359.
- 34. Philippe A, Schaumann GE. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environmental Science & Technology. 2014;48(16):8946-8962.
- 35. Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA. Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environmental Science & Technology. 2015;49(5):2749-2756.
- 36. Mudunkotuwa IA, Grassian VH. The devil is in the details (or the surface): impact of surface structure and surface energetics on understanding the behavior of nanomaterials in the environment. Journal of Environmental Monitoring. 2011;13(5):1135-1144.
- 37. Odzak N, Kistler D, Behra R, Sigg L. Dissolution of metal and metal oxide nanoparticles in aqueous media. Environmental Pollution. 2014;191:132-138.
- 38. Stegemeier JP, Colman BP, Schwab F, *et al*. Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed) exposed to silver and silver sulfide nanoparticles. Environmental Science & Technology. 2015;49(12):7936-7943.
- 39. Adeleye AS, Conway JR, Garner K, *et al.* Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chemical Engineering Journal. 2016;286:640-662.
- 40. Salminen JM, Tuomi PM, Jørgensen KS. Functional diversity and activity of microbial communities in aged hydrocarbon-contaminated soils. Environmental Pollution. 2008;154(3):331-340.
- 41. Kah M, Hofmann T. Nanopesticide research: current trends and future priorities. Environment International. 2014;63:224-235.

42. Gogos A, Knauer K, Bucheli TD. Nanomaterials in plant protection and nutrition: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry. 2012;60(39):9781-9792.

- 43. Aslani F, Bagheri S, Muhd Julkapli N, *et al*. Effects of engineered nanomaterials on plants growth: an overview. The Scientific World Journal. 2014;2014:641759.
- 44. Rico CM, Majumdar S, Duarte-Gardea M, *et al.* Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry. 2011;59(8):3485-3498.
- 45. Khot LR, Sankaran S, Maja JM, *et al*. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protection. 2012;35:64-70.
- 46. Chen H, Yada R. Nanotechnologies in agriculture: new tools for sustainable development. Trends in Food Science & Technology. 2011;22(11):585-594.
- 47. Antisari LV, Carbone S, Gatti A, *et al*. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biology and Biochemistry. 2013;60:87-94.
- 48. Kookana RS, Boxall AB, Reeves PT, *et al.* Nanopesticides: guiding principles for regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry. 2014;62(19):4227-4240.
- 49. Tiede K, Boxall AB, Tear SP, *et al.* Detection and characterization of engineered nanoparticles in food and the environment. Food Additives & Contaminants. 2008;25(7):795-821.
- 50. Singh B, Sharma BK, Tarafdar JC. Nanoparticle mediated enhancement of seed germination and plant growth of green gram (Vigna radiata). Current Nanoscience. 2013;9(1):128-132.